

APPENDIX 4-9

ENGINEERING SERVICES

REPORT

Moygaddy Castle SHD For Sky Castle Ltd

> PROJECT NO. S665 26 August 2022

Multidisciplinary Consulting Engineers

Moygaddy Castle SHD for Sky Castle Ltd

> PROJECT NO. S665 26 August 2022

for

Moygaddy Castle SHD,

at Moygaddy, Co. Meath.

NOTICE

This document has been produced by O'Connor Sutton Cronin & Associates for its client, *Sky Castle Ltd*. It may not be used for any purpose other than that specified by any other person without the written permission of the authors.

DOCUMENT CONTROL & HISTORY

OCSC Job No.:		Project Code	Originator	Zone Volume	Level	File Type	Role Type	Number	Status /	Suitability Code	Revision
5665		S665	ocsc	1C	xx	RP	С	0002		54	P08
										-	
Rev.	Rev. Status		Auth	nors	Checked			Authorised		Issue Date	
P08 S4		S4	МК	МК		AH		AH		26.0	8.2022
P07		S4	MK		A	H		AH		25.0	8.2022
P06	P06 S4		MK		AH			AH		19.08.2022	
P05 S2		S2	MK		AH			AH		10.08.2022	
P04 S4		MK	MK		AH		AH		07.12.2021		
P03 S2		S2	MK	MK		AH		AH		01.12.2021	
P02	P02 S2		MK		A	Н		AH		18.10.2021	
P01 S2		MK		A	Н		AH		08.1	0.2021	

TABLE OF CONTENTS

3.5.3.5

ADL			FAGL						
1 IN	TRODUCTI	ON	1						
1.1	Appointment1								
1.2	Administrat	Administrative Jurisdiction1							
1.3	Site Locatio	n	1						
1.4	Existing Site	e Overview	2						
1.5	Proposed D	evelopment Context	3						
1.6	Further Dev	velopment Context	6						
2 SC	COPE OF WA	ATER SERVICES REPORT	7						
3 SI	JRFACE WA	TER DRAINAGE	8						
3.1	Surface Wa	ter Design Overview	8						
3.1	1	Design Guidelines Overview	8						
3.2	Surface Wa	ter Management Strategy Overview	9						
3.3	Consultatio	n	9						
3.4	Existing Site	e Drainage	9						
3.4	.1	Existing Surface Water Drainage Infrastructure	9						
3.4	.2	Existing Site Catchment Areas							
3.4	.3	Existing Site Rainfall Runoff	11						
3.5	Proposed Su	urface Water Drainage Design Strategy	13						
3.5	.1	Proposed Surface Water Strategy Overview	13						
3.5	.2	Climate Change Allowance	13						
3.5	.3	Proposed Surface Water Network Strategy	13						
	3.5.3.1	Rainwater Harvesting	14						
	3.5.3.2	Pervious Paving	15						
	3.5.3.3	Trapped Road Gullies	16						
	3.5.3.4	Underground Pipe Network	16						

	3.5.3.6	Attenuation Storage Systems	.17				
	3.5.3.7	Swales	18				
	3.5.3.8	Flow Control Device	18				
	3.5.3.9	Oil Separator	19				
	3.5.3.10	Filter Drain	20				
	3.5.3.11	Non-Return Valve	20				
3.6	Proposed Su	urface Water Network Detailed Design	20				
3.6	5.1	Software Design Criteria	20				
3.6	5.2	Proposed Surface Water Catchment Areas	21				
3.6	5.3	Proposed Development Rainfall Runoff	.22				
3.6	5.4	Proposed Surface Water Pipe Network Design	23				
3.7	Proposed Su	urface Water Attenuation Storage	24				
3.8	Surface Wa	ter Outfall Locations	25				
3.9	Water Qual	ity	26				
3.10	Maintenand	e	26				
3.11	Surface Wa	ter Impact Assessment	27				
3.1	1.1	Criterion 1 – River Water Quality Protection	27				
3.1	1.2	Criterion 2 – River Regime Protection	28				
3.1	1.3	Criterion 3 – Level of Service (Flooding) Site	28				
	3.11.3.1	Sub-Criterion 3.1	28				
	3.11.3.2	Sub-Criterion 3.2	29				
	3.11.3.3	Sub-Criterion 3.3	29				
	3.11.3.4	Sub-Criterion 3.4	29				
3.1	1.4	Criterion 4 – River Flood Protection	30				
3.12	Taking in Ch	narge	30				
4 W	ASTEWATE	R DRAINAGE	31				
4.1	Overview						
4.2	Consultation						
4.3	Existing Wastewater Drainage32						

4.4	New Irish Water Infrastructure						
4.5	Proposed Wastewater Drainage Strategy34						
4.6	Wastewater Pumping Station						
4.7	Taking In Charge						
5 PO	TABLE WATER SUPPLY						
5.1	Overview						
5.2	Consultation						
5.3	Connection to the Existing Network						
5.4	Water Saving Devices						
5.5	Water Meters						
5.6	Taking In Charge						
6 RO	ADS AND TRAFFIC 40						
6.7	Design Standards40						
6.8	Proposed Road Network						
6.9	Road Classification						
6.10	Road Design Speeds45						
6.11	Horizontal and Vertical Geometry46						
6.12	Road Cross Section						
6.12	.5 Carriageway						
6.12	.6 Footpaths						
6.12	.7 Cycle Facilities						
6.13	Road Junctions						
6.14	Consultation48						
6.15	Traffic Impact						
6.16	Site Accessibility						
APPEN APPE	DICES NDIX A. QBAR Calculation and Rainfall Data						

APPENDIX A.	QBAR Calculation and Rainfall Data
APPENDIX B.	Surface Water Design Criteria and Simulation Results
APPENDIX C.	Wastewater Design Calculation and Network Details
APPENDIX D.	Irish Water Correspondence
APPENDIX E.	Site Investigation Report
APPENDIX F.	Response to MCC Transportation Dept. Comments

1 INTRODUCTION

1.1 Appointment

O'Connor Sutton Cronin & Associates (OCSC) have been appointed by *Sky Castle Ltd* to carry out the design of the civil engineering services and infrastructure associated with the proposed 360nr. unit residential and crèche development at Moygaddy, Co. Meath, which is located north east from the town of Maynooth, Co. Kildare.

1.2 Administrative Jurisdiction

The proposed residential development is located in the jurisdiction of Meath County Council (MCC). It is noted that a section of a new bridge over the adjacent River Ryewater, and section of the proposed Maynooth Outer Orbital Road (MOOR) are located in lands within Kildare County Council's jurisdiction, as is the route required to provide connections to both wastewater and water connections. Therefore, the engineering services design was carried out with reference to the following:

- Meath County Development Plan (2021 2028);
- Kildare County Council Development Plan (2017 2023);
- Maynooth Environs Local Area Plan (MCC Dev Plan);
- Regional Spatial and Economic Strategy;
- Greater Dublin Strategic Drainage Study (GDSDS);
- The Planning System and Flood Risk Management Guidelines for Planning Authorities (Department of Environment, Heritage and Local Government and the Office of Public Works).

It is noted that this planning permission is being sought through An Bord Pleánala's (ABP) Strategic Housing Development (SHD) application process.

1.3 Site Location

The subject site is located on the southernmost extent of County Meath, aligning with the county boundary to Co. Kildare, and is approximately 1.5km

north from the town of Maynooth, Co. Kildare, as shown in **Figure 1.1 - Site Location**, and is immediately bound by:

- The Blackhall Little stream (as referenced by the EPA), to the east;
- Local Road, L6219, to the north;
- Agricultural lands to the west; and
- River Ryewater to the south.

Figure 1.1 - Site Location (<u>www.myplan.ie</u>)

1.4 Existing Site Overview

The overall gross site area that comprises this planning application (including offsite infrastructural works) is **c.19.52-hectares**, with c.7.89 ha of this zoned by Meath County Council for **A2** - **New Residential**. Other areas within the development boundary are zoned for High Amenity, or include public road and new infrastructure.

The site is currently greenfield and used for agricultural purposes, and can be accessed from the L6219 Road which aligns the northern boundary of the subject site. Ground levels across the site typically fall gently from north to

south, with a sharp decline at the southern and eastern boundaries, which align to the river Ryewater and the Blackhall Little stream respectively. Refer to *Section 3.4.2* for context of existing site levels.

1.5 Proposed Development Context

Planning Permission is sought be Sky Castle Ltd. for the development of a site which extends to 19.52 hectares gross site area in the townland of Moygaddy, Maynooth Environs, Co. Meath. The net developable area equates to 7.89 hectares which equates to a residential density of 45.6 units per hectare.

The proposed development will consist of the following:

- 1. Construction of 360 no. residential units comprising:
 - i. 196 no houses (including 19 no. 2 beds, 156 no. 3 beds and 21 no. 4 beds).
 - ii. 102 no. duplexes (including 51 no. 1 beds and 51 no. 2 beds) set out in 6 no. blocks.
 - iii. 62 no. apartments (including 26 no. 1 beds and 36 no. 2 beds) set out in 2 no. blocks.
- Provision of a public park and playground with associated 42 no. car parking spaces adjacent to Moygaddy Castle and pedestrian and cyclist links along the River Rye. The overall public open space (including the High Amenity Lands) equates to 7.98 hectares.
- 3. Provision of private open spaces in the form of balconies and terraces is provided to all individual apartments and duplexes to all elevations.
- 4. Development of a two-storey creche facility (514 sqm), outdoor play area and associated parking of 29 no. spaces.
- Provision of a single storey Scout Den facility, including a hall, kitchen, meeting room and ancillary facilities (220sqm) and associated parking of 6 no. spaces.
- 6. Provision of 4 no. bridge structures comprising:
 - an integral single span bridge at Moyglare Hall over the River Rye Water to connect with existing road infrastructure in County Kildare and associated floodplain works and embankments.

- a new pedestrian and cyclist bridge at Kildare Bridge which will link the proposed site with the existing road network in County Kildare.
- iii. a new pedestrian and cycle bridge across Moyglare Stream on the L22148 adjacent to the existing unnamed bridge.
- a new pedestrian and cycle bridge over the Moyglare Stream linking the proposed residential site with the proposed Childcare Facility, Scout Den and Moygaddy Castle Public Park.
- 7. Provision of 500m of distributor road comprising of 7.0m carriageway with turning lane where required, footpaths, cycle tracks and grass verges. All associated utilities and public lighting including storm water drainage with SuDS treatment and attenuation.
- 8. Proposed road improvement and realignment works including:
 - realignment of a section of the existing L6219 local road, which will entail the demolition of an existing section of the road which extends to circa 2,500 sqm.
 - Provision of pedestrian and cycle improvement measures along the L6219 and L22148 which abuts the boundary of Moygaddy House which is a Protected Structure (RPS ref 91558).
 - Provision of pedestrian and cycle improvement measures along the R157 which abuts the Carton Demense Wall which is a Protected Structure (RPS Ref 91556).
- 9. Provision of 2 no. vehicular and pedestrian accesses from the L6219 local road, and 1no. vehicular and pedestrian entrance from the L22148 and an additional vehicular and pedestrian access from the R157 to the Childcare and Scout Den facilities.
- 10.The proposed development will provide 283 no. of bicycle parking spaces, of which 200 no. are long term spaces in secure bicycle stores and 83 no. are short term visitor bicycle parking spaces. 12 no. bicycle spaces are provided for the creche and 12 no. bicycle spaces are provided for the Scout Den.

- 11.A total of 667 no. car parking spaces are provided on site located at surface level. The car parking provision includes 10 no. Electric Vehicle charging and Universally Accessible spaces allocated for the Apartment & Duplex units. All Houses will be constructed with provision for EV Charging.
- 12.Provision of site landscaping, public lighting, bin stores, 3 no. ESB unit substations, site services and all associated site development works.
- 13.A Natura Impact Statement (NIS) and Environmental Impact Assessment Report (EIAR) has been included with this application.

The proposed site layout is shown in **Figure 1.2**, with context to the wider Maynooth Environs area that is in the Applicant's ownership.

Figure 1.2 - Proposed Development Layout

1.6 Further Development Context

The developer has also committed to submitting a separate planning application to Meath County Council for the development of the Maynooth Outer Orbital Road (MOOR), which is routed from the northern corner of this proposed development, through the Moygaddy Environ's lands and around to meet the R157 road, north from the Kildare Bridge.

Additional planning applications will be simultaneously submitted to Kildare County Council for the following two infrastructural works, which complement both the proposed development and the delivery of the MOOR:

- Moyglare Bridge i.e., new bridge structure at southwestern extent of MOOR, including associated water services for extension and connection to public infrastructure;
- Kildare Bridge upgrade, and associated infrastructure connections i.e., addition of pedestrian and cycle link structure, adjacent to the Kildare Bridge.

The subject site is part of a larger land-holding, held by Sky Castle Ltd, which is zoned for Strategic Employment, Tourism, and Community Infrastructure. The applicant – Sky Castle Ltd – intends to submit separate planning applications for a Nursing Home, Primary Care Centre, and a Biomedical Office Campus. These projects are subject to separate, independent planning applications, which will be accompanied by site-specific Engineering Services reports, and associated design drawings.

Project: S665 Issued: 26-Aug-22

2 SCOPE OF WATER SERVICES REPORT

The Outline Engineering Services Report was prepared by reviewing the available data from the Local Authority sources and national bodies *i.e.*, Meath County Council, Kildare County Council, Irish Water, The OPW, and the wider Design Team. The following services are addressed within this report, with respect to the proposed development:

- Surface Water Drainage;
- Wastewater Drainage;
- Potable Water Supply;
- Roads Infrastructure.

The proposed design for the above engineering services have been carried out in accordance with the following technical guidelines and information:

- Meath County Council Development Plan (2021 2027);
- Kildare County Development Plan (2017 2023);
- Maynooth Environs Local Area Plan (MCC);
- Greater Dublin Strategic Drainage Study (GDSDS);
- Greater Dublin Regional Code of Practice for Drainage Works (GDRCOP);
- Irish Water Code of Practice for Wastewater, IW-CDS-5030-03;
- Irish Water Code of Practice for Water Supply, IW-CDS-5020-03;
- The Building Regulations Technical Guidance Document Part H;
- BE EN 752 Drainage Outside Buildings;
- BS 7533-13 Guide for Design of Permeable Pavements;
- CIRIA C753 The SuDS Manual;
- The Office of Public Works, the Planning System and Flood Risk Management;
- Irish Water Drainage & Watermain Records.

3 SURFACE WATER DRAINAGE

3.1 Surface Water Design Overview

3.1.1 Design Guidelines Overview

Any planning permission sought on the subject lands are required to adhere to the Local Authority requirements *i.e.*, the Meath County Council Development Plan, the Maynooth Environs Local Area Plan, and as such, the Greater Dublin Strategic Drainage Study (2005).

New development must ensure that a comprehensive Sustainable Drainage System (SuDS), is incorporated into the development. SuDS requires that post development run-off rates be maintained at equivalent, or lower, levels than pre-development levels. Thus, the development must be able to retain, within its boundaries, surface water volumes from extreme rainfall events up to a 1 in 100-year rainfall event, more commonly expressed as a 1.0% AEP (Annual Exceedance Probability), *while also allowing for an additional climate change factor of* **20%** *increase in rainfall intensity*. Any new development must also have the physical capacity to retain surface water volumes as directed under the Greater Dublin Strategic Drainage Strategy (GDSDS) and, if necessary, release these attenuated surface water volumes to an outfall at a controlled flow rate, not greater than the greenfield runoff equivalent.

A further component of the SuDS protocol is to increase the overall water quality of surface water runoff before it enters a natural watercourse or a public sewer, which ultimately discharges to a water body. This is to ensure the highest possible standard of surface water quality.

The surface water strategy for the proposed development is to include a number of Sustainable Drainage Systems, prior to discharging an attenuated and treated flow to the existing watercourses that align to the southern and eastern boundaries of the main development site. Development discharge rates are to be restricted to less than the calculated greenfield runoff equivalent.

SuDS are designed in accordance with best practice and the CIRIA C753 (The SuDS Manual) guidance material.

3.2 Surface Water Management Strategy Overview

The proposed development is to be served by a gravity surface water drainage network that is to be divided into two main catchments as a result of the natural topography and other site constraints. The attenuated and treated surface water runoff that will be generated within the new development site is to discharge to the adjacent watercourses.

Sustainable Drainage Systems are to be provided across the site, wherever practicable, and these are discussed in more detail in *Section 3.4.3*, with discharge rates from site being restricted to less than the calculated greenfield equivalent runoff rate, for design rainfall events up to, and including, the 1% AEP, in accordance with the Meath County Development Plan and the GDSDS.

3.3 Consultation

The proposed strategy has been discussed in detail with Meath County Council's (MCC) Drainage Department prior to submission, including at the tripartite meeting with An Bord Pleanála (ABP), MCC, and the Applicant.

Further, MCC's drainage department issued an opinion report, as part of a response to the Stage 2 submission to ABP, with all comments discussed with MCC and addressed accordingly, as part of the design completion.

3.4 Existing Site Drainage

3.4.1 Existing Surface Water Drainage Infrastructure

There is currently no existing public surface water drainage infrastructure in the vicinity of the site that can serve the proposed development.

There are significant natural drainage routes along the southern and eastern boundaries of the site, namely the River Ryewater and the Blackhall Little stream (also known as the Moygaddy Stream), respectively. The site currently

drains naturally to these watercourses; refer to **Figure 3.1** for overview of existing natural watercourses in the vicinity of the proposed development.

Figure 3.1 - Local Watercourses

3.4.2 Existing Site Catchment Areas

The main part of the overall development application, which is to contain the residential development site, has the existing L6219 road along its northern boundary that acts as a surface water catchment boundary. The entire site is then graded towards the river Ryewater, which aligns to its southern boundary, and the Blackhall Little stream, which aligns to the eastern boundary. There is also a shallow valley near the centre of the site, however, this is also graded towards the southern boundary. Refer to Figure 3.2 for overview of site contours, indicated at 0.25m interval.

Figure 3.2 – Site Levels and Contour Overview of Residential Lands

Similarly, the area of land to the east of the Blackhall Little stream, which is to provide new creche facilities, Scout Den and public park, is graded gently towards the Blackhall Little stream, to its west.

3.4.3 Existing Site Rainfall Runoff

All surface water runoff, on the existing site, currently infiltrates to the ground or discharges excess runoff to the Blackhall Little stream or River Ryewater, which align the eastern and southern boundaries respectively. Refer to *Section 3.4.2* for further details of existing site catchment area context.

A Site investigation was carried out on site in July 2021, with 3nr. soakaway tests performed to BRE Digest 365 requirements, at locations in the vicinity of open space in the new development. All 3nr. tests failed, with little to no infiltration observed. The existing subsoil was determined to be of stiff clayey substance, consistently across the site. In addition, groundwater was struck at a depth of approximately 1.6m below ground level near the northern extent of the site but not observed elsewhere, notably not at location of SuDS structures, including attenuation systems.

A copy of the Site Investigation Report is provided in **Appendix E** of this ESR.

Therefore, as a result of the above, **Soil Type 4** has been assigned for rainfall runoff calculations, as discussed and agreed with Meath County Council.

The Standard Average Annual Rainfall (SAAR) value for the development site, as sourced from Met Éireann, is **799mm**.

Using the ICPSuDS Input, (Flood Studies Report, FSR) Method, the rainfall runoff discharging from the total greenfield site area that is to be developed has been estimated at QBAR_{RURAL} **5.6 l/s/ha**, in its existing condition.

Refer to Figure 3.3 for an excerpt of the results from the MicroDrainage Runoff Calculator, which provides the calculated QBAR (*per hectare*) runoff rate, along with the discharge rate (*per hectare*) for varying Annual Recurrence Intervals (ARI).

🖹 Rural Runoff Calculator – 🗆 🗙										
a 🕼 🖄										
	ICP SUDS									
Micro	ICP SUDS Input (FSR Method)							Results		
bioinage	Return Period (Years)	2	Partly l	Partly Urbanised Catchment (QBAR)			QBAR rural (1/s)			
	Area (ha)	1.000	Urban	Urban 0.000 Region Ireland East v			5.6 QBAR urban (l/s)			
	SAAR (mm)	799	Region			0				
	Soil	0.470	L				5.6			
	Growth Curve		(None)	(None) Cal		late				
IH 124	IH 124									
ICP SUDS	Return Period Flood									
ADAS 345 OBAR 0 (2vrs) 0 (1 vrs) 0 (30 vrs) 0 (100 vrs)]	~			
FEH	Region	(l/s)	(I/s)	(l/s)	(l/s)	(l/s)				
ReFH2	Ireland East	5.6	5.4	4.8	9.2	10.7				
Greenfield Volume Iroland Wost		5.6	5.4	4.8	9.0	10.4				
Greenfield Volume	Greenfield Volume Ireland Greater Dublin		5.2	4.8	12.0) 14.7				
(KeFHZ)										
OK Cancel Help										
Enter Return Period between 1 and 1000										

Figure 3.3 - Existing Site Runoff Calculator Results (MicroDrainage Excerpt)

3.5 Proposed Surface Water Drainage Design Strategy

3.5.1 Proposed Surface Water Strategy Overview

It is proposed to separate the surface water and wastewater drainage networks, which will serve the proposed development, and provide independent connections to the adjacent watercourse (for surface water only) and local wastewater sewer network respectively. Refer to *Section 4* for details of the proposed wastewater drainage design.

3.5.2 Climate Change Allowance

The proposed surface water network is yet to be designed to allow for an additional 20% increase in rainfall intensity, to allow for Climate Change projections, in accordance with the Meath County Development Plan and the GDSDS.

All discussion within this report, with regards to surface water network design calculation and results, include for the allowance of an increase of <u>20%</u> in rainfall intensity, as required.

3.5.3 Proposed Surface Water Network Strategy

The proposed surface water network is to be split into two main catchment areas, in order to best integrate Sustainable Drainage Systems across the site and manage the surface water runoff. Each catchment area will look to provide treatment to the rainfall runoff, either at source or through site design. Infiltration systems are provided as part of the integrated SuDS network, however, as a results of the failed soakaway tests during site investigation, no infiltration is considered as part of the design. This will still allow for interception to be provided for the first rainfall events, and slow recharge of groundwater. Therefore, the main functions of the SuDS provided will be for interception and treatment of the rainfall runoff, in order to reduce the runoff volume and increase the runoff quality, prior to discharge from the new development.

Project: S665

Issued: 26-Aug-22

The proposed crèche, being an isolated catchment area, is also to have its own independent surface water drainage network from above, with the local landscaping being utilised for sustainable drainage systems, in order to improve the quality and reduce the runoff to less than greenfield equivalent, prior to discharging to the adjacent Blackhall Little stream.

The proposed surface water networks are to typically comprise a gravity pipe network, with significant Sustainable Drainage Systems implemented, where practicable.

Attenuation systems are to be strategically located within public open space areas, and the design intent is to reduce the rainfall runoff from the proposed development to **less than** the greenfield runoff equivalent; thus, resulting in no adverse impact on the receiving watercourse.

The typical traditional and Sustainable Drainage Systems (SuDS) to be provided, all of which will be designed in accordance with CIRIA C753, the SuDS Manual, and the design guidance material listed in *Section 2* of this report, are listed and detailed in order of general sequence within the drainage network, as follows:

3.5.3.1 Rainwater Harvesting

Rainwater harvesting are to be considered at individual residential units in the form of 'Water Butts', which can re-use the collected rainwater for gardening and other domestic watering purposes. Rainwater Butts help to reduce the overall volume of rainfall runoff entering the surface water network.

Figure 3.4 - Example of Domestic Rainwater Harvesting Butt

Project: S665 Issued: 26-Aug-22

3.5.3.2 Pervious Paving

Pervious pavements provide a pavement finish suitable for both pedestrian and vehicular traffic, while also allowing rainwater to infiltrate the surface layer and into the underlying pervious structural layers. Here, the rainwater is temporarily stored beneath the overlying finished surface before either infiltration to the ground or / and controlled discharge to the main surface water drainage network.

Figure 3.5 - Detail of Type B Pervious Paving (CIRIA C753)

Pervious paving systems are an efficient means of treating the rainwater at source by providing initial interception of the rainwater, reducing the volume and frequency of the runoff and improving the surface water quality by providing at source treatment of the rainfall runoff leaving the site. This is achieved by helping remove and retain pollutants prior to discharge to the drainage system and / or groundwater system.

Rainfall runoff from roof level of the proposed housing units can also discharge to the permeable base course of the pervious paving, via a diffuser unit. This will allow for initial interception of rainfall, along with attenuation for each individual house unit.

A **Type B** pervious paving, with a 300mm depth of open graded crushed rock as base course, is to be provided in all in-curtilage car parking spaces, within

the proposed development. An overflow pipe, from the base-course, will be provided to the drainage network, which will allow for interception of initial rainfall, groundwater discharge, with an attenuated outflow to the main network in extreme rainfall events.

Other on-street parking areas, such as those associated with the proposed duplexes, apartments, and crèche facilities are to comprise a porous asphalt type finish, or similar approved. However, pervious paving is not to be provided in any spaces or areas that are to be taken in charge by Meath County Council.

3.5.3.3 Trapped Road Gullies

All road gullies serving the proposed development are to be trapped, to help prevent sediment and gross pollutants from entering the surface water network, and thus improving the water quality discharging from site.

The grated covers are to have a minimum load classification of D400, for frequent vehicular traffic, and shall be lockable, as required by MCC, with 150mm outlet pipes.

Figure 3.6 - Trapped Road Gully (Typical Detail)

3.5.3.4 Underground Pipe Network

A traditional gravity pipe and manhole network will be provided, to convey the collected rainfall runoff as far as the development's outfall. Manholes are provided for maintenance access at branched connections, change in pipe size and gradient, and at intervals no greater than 90m distance.

3.5.3.5 Silt Traps

All manholes upstream of attenuation systems are to contain a 600mm sump, below invert level of outlet pipe, in order to trap sediment and other gross pollutants, and prevent from entering the downstream watercourse; thus, improving the water quality discharging from site.

Figure 3.7 - Typical Detail of Silt Trap Manhole

3.5.3.6 Attenuation Storage Systems

Unlined proprietary poly-tunnel storage units (or similar approved) are to be provided, underground in proposed green-spaces, for the attenuation of rainfall runoff prior to discharge to the existing natural watercourses.

These systems are to provide sufficient temporary storage volume for rainfall events up to, and including, the design 1% AEP rainfall event (including climate change). Typical poly-tunnel storage systems comprise plastic arch-units with open-graded crushed rock bedding and surround. These units are arranged in rows, with an isolator row for efficient operation and maintenance.

These systems also allow for interception of initial rainfall to be provided at the base of the system, by elevating the outlet relative to the systems base.

3.5.3.7 Swales

Swales will be provided along the southern development road. These will typically be Type 2 Dry Swales in accordance with CIRIA C753 SuDS Manual. Swales will collect runoff from roads and will facilitate treatment and infiltration.

Figure 3.9 – Example Roadside Swale

3.5.3.8 Flow Control Device

Flow Control devices are to be provided immediately downstream of attenuation systems, in order to restrict the surface water discharge from site to a flow rate equivalent, or below, the natural greenfield runoff rate.

It is proposed to provide the Hydro-brake optimum vortex flow control unit (or similar approved by MCC), downstream of the attenuation systems.

Further, it is noted that the required aperture of the proposed flow control outlets have been designed to be greater than 150mm diameter, to mitigate the risk of blockage.

Each flow control chamber is to be fitted with a penstock valve at the inlet and a bypass lever at the outlet (if required), to allow for easy access and maintenance.

Figure 3.10 - Vortex Hydro-Brake Flow Control Unit (Hydro International)

3.5.3.9 Oil Separator

Oil separators are designed to separate gross amounts of oil and large $(>250\mu m)$ suspended solids from the surface water, mainly through sedimentation process.

The proposed surface water network already provides sufficient mitigation measures, through the provisions listed previously (principally the pervious paving, filter drains, trapped road gullies and silt traps, and the attenuation interception layer). However, a Class 1 bypass fuel separator is to be provided as an additional and final mitigation measure, upstream of attenuation system, prior to surface water discharge to both the network and watercourse.

Figure 3.11 - Typical Section Detail of Fuel Separator (CIRIA C753)

Project: S665 Issued: 26-Aug-22

The fuel separator is to be provided at a location upstream of attenuation system, as per Meath County Council requirements.

3.5.3.10 Filter Drain

A filter drain is an open graded stone filled trench, which can also include a perforated pipe to assist distribution and conveyance of rainfall runoff along its length. Rainfall runoff can be stored within the void content of the stone trench, which should be wrapped in a fine geotextile to prevent fine sediment from entering the structure.

It is proposed to provide a filter drain from the flow control device to the development's network outfall, in order to further reduce the volume of rainfall runoff discharging from site, subject to agreement with Meath County Council.

Figure 3.12 - Filter Drain Illustration

3.5.3.11 Non-Return Valve

The development levels, and as such the typical levels of the surface water drainage network are significantly above the water level of the receiving watercourse. Notwithstanding, a non-return valve is to be provided, fitted to the headwall, at each outlet to the receiving watercourse.

3.6 Proposed Surface Water Network Detailed Design

3.6.1 Software Design Criteria

The proposed surface water network is to be designed in accordance with the regulations and guidelines outlined in *Section 2*, using MicroDrainage Network Design package, by Innovyze Inc., which simulates the performance of the

integrated drainage network for varying rainfall return periods and storm durations.

The MicroDrainage Network Design software applies the Flood Studies Report (FSR) methodology for analysis of the rainfall profiles. However, the input design parameters that were used, as part of this design, were based on the available Flood Studies Update (FSU) data, *i.e.*, the return period rainfall depths for sliding durations, which determine the M_{5-60} and R values, and the standard annual average rainfall (SAAR); as sourced from Met Éireann.

Design Criteria								
UKRainfall	Design							
FSR Rainfall 🗸	Pipes GDRCOP	Drainage						
Return Period (years) 5	Manholes GDRCOP	ОК						
Region Scotland and Ireland ~	Level Level Soffits V	Cancel						
Map M5-60 (mm) 15.700	Additional Flow / Climate Change (%) 20	Help						
	Min. Backdrop Height (m)	Default						
	Max. Backdrop Height (m) 1.500							
	Min. Design Depth for optimisation (m) 1.200							
Inflow	Min. Velocity for Auto Design only (m/s) 1.00							
Global Time of Entry (mins) 5.00	Min. Slope for Optimisation (1:X) 500							
Max. Rainfall (mm/hr) 50								
Max. Time of Conc. (mins) 30								
Foul Sewage per hectare (I/s)								
PIMP (%)								
Volumetric Run-off Coeff. 0.750								
Enter Minimum Slope between 100 and 1000								

Figure 3.13 - Surface Water Network Design Criteria (MicroDrainage Excerpt)

3.6.2 Proposed Surface Water Catchment Areas

The proposed surface water network is to be split into a number of catchments, each with their own sub-catchments, in order to best integrate Sustainable Drainage Systems. Each sub-catchment area will look to provide treatment to the rainfall runoff, either at source or through site design, with all treated rainfall runoff being directed towards the river Ryewater, as is its natural course.

The discharge rate from each catchment area, have been designed to be restructured to 5.5 l/s/ha, which is less than the calculated greenfield equivalent.

Catchments B and C are both served by the same surface water drainage network, with the network discharging to the Blackhall Little stream. The rainfall runoff for sub-catchment B is treated and attenuated, prior to discharging to the network that serves sub-catchment C, in order to keep design flow rates low and consequently reduce required pipe sizes, and attenuation volume in sub-catchment C, prior to discharge to the Blackhall Little stream.

Figure 3.14 - Development Catchment Areas

Refer to OCSC drawing S665-OCSC-1C-XX-DR-C-0580 for breakdown of catchment areas, as per **Figure 3.14**.

3.6.3 Proposed Development Rainfall Runoff

It is proposed to reduce and restrict the rainfall runoff, discharging from the proposed development, to the greenfield equivalent, QBAR_{RURAL}, runoff rate, as per the FSR ICP SuDS method, which is based on the IH124 method for catchments smaller than 25km² in area.

This is to be achieved with the provision of a flow restrictor (Hydro-Brake Optimum by Hydro-International, or similar approved) prior to discharging to the existing watercourse at the south western corner of the site, with the appropriate measures of attenuation provided. Sub-catchment flow-control devices and associated attenuation are also to be strategically provided, in order to maximise SuDS benefits and avail of the central open space for preliminary attenuation.

Refer to Figure 3.3, in *Section 3.4.3*, for an excerpt from the results MicroDrainage Runoff Calculator for the development catchment area, which indicates the greenfield equivalent, QBAR_{RURAL}, value 5.6 l/s/ha, along with the calculated runoff for varying Average Recurrence Intervals (ARI).

The design intent is to reduce the rainfall runoff from the proposed development to a maximum of **5.5 l/s/ha**, which is *less than* the greenfield runoff equivalent; thus, resulting in no adverse impact on the receiving watercourse.

For the purpose of the surface water network design simulation, we have considered all external (roads, pavement, and roofs) areas as being 100% impermeable; giving a <u>winter</u> global runoff coefficient, C_v, of 0.84, in accordance with the HR Wallingford and Modified Rational Method for runoff. The proposed in-curtilage driveways, for each house-type, is to comprise pervious paving above a drainage layer base course. A reduced percentage impermeable factor of 80% has been applied for these locations, which conservatively accounts for initial interception from the pervious paving build-up.

3.6.4 Proposed Surface Water Pipe Network Design

The overall surface water drainage system, serving both catchments in the proposed development, is to consist of a gravity sewer network that will convey runoff from the roofs and paved areas to the outfall manhole.

The proposed piped-network has been designed in accordance with BS EN 752 and all new infrastructure is to be compliant with the requirements of the

GDSDS and the GDRCOP for Drainage Works, with minimum full-bore velocities of 1.0 m/s achieved throughout.

All main surface water carrier pipes have been sized to ensure no surcharging of the proposed drainage network for rainfall events up to, and including, the 1 in 5-year ARI event, with a projected climate change allowance of 20% increase in rainfall intensity, under normal flow conditions.

3.7 **Proposed Surface Water Attenuation Storage**

Attenuation systems are to be provided at strategic locations within the development in order to temporarily store excessive rainfall runoff, during significant rainfall events, due to the restricted discharge rates (to less than greenfield equivalent runoff rates) from the development outfalls.

This will be provided initially at individual residential units by provision of pervious paving for car parking areas, which is to comprise a pervious paving type surface, with a minimum 300mm depth drainage layer (open graded crushed rock).

The main development attenuation systems will be provided, typically comprising underground polytunnel systems (or similar approved), located at public open space areas. The main residential catchment's attenuation system will provide a polytunnel type system for the design rainfall events up to, and including, the 1-in-30-year ARI events; with additional volumes being temporarily attenuated above ground in the profiled landscaped areas, for more significant rainfall events up to, and including the 1-in-100-year ARI. This is to ensure that the public open space area can remain functional during less sever rainfall events. Refer to **Figure 3.15** for example of above ground detention basin.

Figure 3.15 - Example Detention Basin

Adequate drainage to the finished landscaping will be provided, in order to maintain functionality.

All other attenuation systems will be located completely underground, and shall comprise polytunnel systems, as previously described.

A layer of interception will also be provided under attenuation systems, in order to promote groundwater recharge during the initial 5 – 10mm rainfall periods, pending results of Site Investigation to confirm groundwater levels.

All polytunnel systems have been designed as on-line systems, and shall be provided with an isolator row, with a high level 225mm overflow / distributor pipe.

3.8 Surface Water Outfall Locations

The development is to discharge the treated and attenuated rainfall runoff to the existing watercourse along its southern and eastern boundaries, namely the river Ryewater and the Blackhall Little stream.

The discharge rates are to be restricted to a maximum flow rate of **5.5 l/s/ha**, which is **less than** the current greenfield equivalent runoff rate, as discussed in *Section 3.6.3*.

The above is to ensure that there is no increase in flow rates and volumes, from the development site, being discharged to the receiving infrastructure and waterbodies; thus, causing no adverse impact on adjoining and other downstream properties.

All outfalls are to be fitted with non-return valves.

3.9 Water Quality

The quality of the surface water discharging from site is to be improved through the following provisions, which are being considered as part of an integrated drainage network, and each of which is discussed in greater detail in 3.5.3:

- Rainwater Harvesting Butts at individual residential units;
- Pervious Paving in all private driveways and car parking spaces;
- Intensive landscaping, where practical;
- Swales and Filter Trenches, where allowable;
- Trapped road gullies on all road carriageways, to trap silt and gross pollutants;
- Silt traps to be provided on manholes immediately upstream of attenuation systems, as a further preventative measure to trap silt and other gross pollutants;
- Interception provisions at attenuation systems;
- Class 1 bypass fuel separator to be provided prior to discharging from site;
- Outlet pipe to comprise filter drain, for further interception of attenuated discharge.

3.10 Maintenance

The proposed surface water drainage network is to be carefully designed to minimise risk of blockage throughout the network, mainly through the following provisions that limit and restrict the size of pollutants entering the network:

- Pervious paving;
- Trapped road gullies;
- Silt trap manholes;

- Interception at attenuation systems;
- Flow controls greater than 150mm diameter.

Road gullies, silt traps, flow control devices and attenuation systems, should be inspected regularly and maintained, as appropriate and in accordance with manufacturer's recommendations and guidelines.

Items such as the flow controls and fuel separators shall be located so as to provide easy vehicular access for inspection and maintenance.

3.11 Surface Water Impact Assessment

The design criteria for the drainage system are established in *GDSDS-RDP Volume 2*, *Section 6.3.4* and explained further in *GDSDS-RDP Volume 2*, *Appendix E*. There are four design criteria, each of which has been considered for the subject site:

- River Water Quality Protection;
- River Regime Protection;
- Level of Service (flooding) for the site and;
- River Flood Protection.

3.11.1 Criterion 1 – River Water Quality Protection

It is proposed that the overall drainage system, serving this development, will contain a range of surface water treatment methods, as outlined previously in *Section 3.5.33.5,* which will improve the quality of surface water being discharged from the proposed development.

Gross pollutants, sediments, hydrocarbons, and other impurities, will be removed at source with the following provisions:

- a) Bioretention systems in open spaces;
- b) Intensive landscaping, where practicable;
- c) Interception storage at attenuation systems;
- d) All road gullies and linear channel drains are to be trapped;
- e) Silt-trap prior to attenuation storage area.

3.11.2 Criterion 2 – River Regime Protection

Surface water discharge from the overall development will be restricted to a maximum flow rate of **5.5** I/s/ha, which is less than the greenfield runoff equivalent. Refer to *Section 3.6.3* for further details of the proposed development rainfall runoff calculations.

This will be achieved with the provision of a flow control devices (Hydro-Brake Optimum, by Hydro-International, or similar approved) upstream of the outfall manhole.

3.11.3 Criterion 3 – Level of Service (Flooding) Site

There are four sub-criteria for the required level of service, for a new development; as set out in the *GDSDS Volume 2, Section 6.3.4 (Table 6.3).*

- No flooding on site except where planned (30-year high intensity rainfall event);
- No internal property flooding (100-year high intensity rainfall event);
- No internal property flooding (100-year river event and critical duration for site) and;
- No flood routing off site except where specifically planned. (100-year high intensity rainfall event).

3.11.3.1 Sub-Criterion 3.1

The surface water drainage systems, serving the proposed development, are yet to be designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding. Therefore, the system has capacity for the 30-year return period rainfall event without flooding.

The performance of the proposed drainage system is yet to be analysed for design rainfall events up to, and including, the 1% AEP event (including 20% climate change allowance) using the *MicroDrainage Network Design Software*, by Innovyze Inc. Refer to **Appendix C** of this ESR for details of design criteria, calculations and results. The analyses indicate that no

flooding will occur for design rainfall events up to, and including, the 1% AEP.

3.11.3.2 Sub-Criterion 3.2

The surface water drainage systems, serving the proposed development, are yet to be designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding.

The performance of the proposed drainage system in 100-year return period storm events (including 20% climate change allowance) is yet to be analysed – Refer **Appendix C** of this ESR for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

3.11.3.3 Sub-Criterion 3.3

Details of the flood risk assessment associated with the proposed development is outlined in the Site-Specific Flood Risk Assessment (Document Nr. **S665-OCSC-1C-XX-RP-C-0009**), which is to be submitted under separate cover, as part of this application. Furthermore, a detailed flood study of the river Ryewater has been prepared by JBA Consulting, and submitted under separate cover, which assesses potential impact from development across the Applicant's wider land-holding, which makes up the masterplan area.

These documents confirm that there is no adverse flood risk impact on the subject development, and no adverse flood risk as a result of the subject development.

3.11.3.4 Sub-Criterion 3.4

The surface water drainage systems, serving the proposed development, are designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding, so no flood routing off site will be experienced for such a rainfall event.

The performance of the proposed drainage system in 100-year return period storm events (including 20% climate change allowance) is analysed – Refer **Appendix C** of this ESR for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

Details of the flood risk assessment associated with the proposed development is outlined in the Site-Specific Flood Risk Assessment (Document Nr. **S665-OCSC-1C-XX-RP-C-0009**), which is submitted under separate cover, as part of this application.

3.11.4 Criterion 4 – River Flood Protection

As outlined in *Section 3.11.2* (Criterion 2), the surface water runoff from the development's catchment will be limited to a maximum of **5.5 l/s/ha**, which is less than the calculated greenfield equivalent.

Refer to Section 3.6.3 of this report for further details on the limiting discharge rates. The GDSDS Volume 2, Appendix E states that this practice ensures "that sufficient stormwater runoff retention is achieved to protect the river during extreme events".

Attenuation storage is to be provided for the 100-year return period rainfall event (including an increased 20% rainfall intensity; to allow for climate change). Discharge from site is to be achieved through the use of a vortex flow control device (e.g., Hydro-Brake Optimum, by Hydro-International, or similar approved), which will reduce the risk of blockage present with other flow devices.

Refer to **Appendix C** of this ESR for details of hydraulic modelling calculations of attenuation and flow control facilities, as carried out using MicroDrainage software by Innovyze Inc.

3.12 Taking in Charge

It is proposed that all new surface water infrastructure, **is** to be offered to be taken in charge by Meath County Council.

4 WASTEWATER DRAINAGE

4.1 Overview

All proposed wastewater sewer design is to be carried out in accordance with Irish Water's Code of Practice for Wastewater Infrastructure. The existing site is currently greenfield, with no existing wastewater infrastructure in the immediate vicinity.

4.2 Consultation

A Pre-Connection Enquiry Form has been submitted to Irish Water for review, for both the proposed development, as well as for the Applicant's wider land holding, which forms part of the masterplan development for the Maynooth Environs lands. Irish Water (IW) issued a Confirmation of Feasibility Letter (Refer Appendix D) for the proposed development, subject to upgrade works being carried out.

OCSC and the applicant have had continued correspondence and meetings with Irish Water with respect to required upgrade works, and have committed to working with Irish Water in order to provide a strategic Wastewater Pumping Station (WWPS) within the applicant owned lands, at Moygaddy. The provision of strategic WWPS, centralised on the Maynooth Environs lands, will allow for new development in this area to be served by wastewater infrastructure, and subsequently allow expansion in order to serve the entire Maynooth Environs lands, as future phasing of development is brought on board.

The strategy of providing a WWPS, as noted, includes provision of rising main infrastructure to specifically serve the subject development, and the pipe will be routed along the Dunboyne Road, and routed across the river Ryewater, adjacent to the Kildare Bridge, so that a connection to the gravity infrastructure upstream of the Maynooth municipal WWPS can be achieved.

Further consultation between the Applicant and Irish Water has been had in relation to Irish Water's Capital Project, which is for the provision of new high pressure rising main infrastructure to serve Maynooth Town from the Maynooth municipal WWPS, as far as Leixlip wastewater treatment plant. These ongoing

works are to greatly improve the performance and capacity of the municipal WWPS, with a section of the new pipeline infrastructure to be provided in Applicant-owned lands. This is discussed further in *Section 4.4*.

In addition to all of the above, the detailed network design was issued to Irish Water for review, with a Statement of Design Acceptance issued on 19th August 2022, which is included in **Appendix D** of this ESR.

4.3 Existing Wastewater Drainage

There is currently no existing wastewater infrastructure in the immediate vicinity of the site. Following detailed consultation with Irish Water, and returned Confirmation of Feasibility letter, it was confirmed that sections of the Maynooth Town's main wastewater infrastructure has capacity issues, most likely caused by surplus surface water connections to the network.

The Applicant and Irish Water have committed to extensively identify the proposed route to the south east, as shown in Figure 4.1, as an alternative connection route.

Figure 4.1 – Site Location Relative to Maynooth WWPS

Project: S665 Issued: 26-Aug-22

Maynooth Town is served by a municipal WWPS, at its eastern extent, which discharges wastewater effluent to Leixlip Wastewater Treatment Plant. There is a gravity wastewater network on the Dunboyne Road, adjacent to the Maynooth WWPS.

Figure 4.2 –Existing Wastewater Network and Pumping Station

4.4 New Irish Water Infrastructure

As part of Irish Water's Strategic Capital Investment Programme, Irish Water are currently undergoing design and construction of a new wastewater rising main that will improve the capacity and performance of the nearby Maynooth public Wastewater Pumping Station, and the associated capacity improvements will also serve the proposed development.

The proposed rising main is to be routed north and east, towards the public Wastewater Treatment Plant at Leixlip, with a section of the route located within the eastern part of the Moygaddy Environ's LAP lands that are owned by the Applicants as part of their wider land-holding.

The Developer has been in detailed consultation with Irish Water, for design development of the section of new rising main, in order to help accommodate the new strategic infrastructure within their lands.

The Section of infrastructure from the Maynooth WWPS as far as the river Ryewater has already been installed. From discussions with Irish Water, it is expected that the new infrastructure will be commissioned in 2025.

4.5 Proposed Wastewater Drainage Strategy

It is proposed to separate the wastewater and surface water drainage networks, which will serve the proposed development independently.

Refer to *Section 3* for details of the proposed surface water drainage design strategy.

The wastewater discharge from each dwelling is to connect, via a private outfall chamber, to the new development's gravity wastewater network, which has been designed in accordance with the Irish Water Code of Practice for Wastewater Infrastructure.

The overall strategy for the new residential (incl. crèche and scout's den) is to provide a gravity wastewater connection to a new underground strategic wastewater pumping station (WWPS), located in Applicant owned lands, east from the subject development site. From here, the new WWPS will discharge the new development's effluent, via pumped rising main, to the Maynooth Town municipal WWPS, located on the eastern extent of Maynooth. Refer *Section 4.3* for details of existing infrastructure.

In order to accommodate the above design solution, a gravity crossing is to be provided from the residential development, eastward across the Blackhall Little stream. This is to be achieved by utilising a new pedestrian bridge structure to secure the wastewater pipe, to its soffit, as it crosses the stream.

A gravity connection will be provided to the new Strategic WWPS, which shall be designed to accommodate for the new development, while also allowing for future expansion to serve the wider Maynooth Environs area, as future phases are brought on board. Refer to *Section 4.6* for further details.

Project: S665 Issued: 26-Aug-22

The new WWPS shall discharge pumped effluent via rising main – with additional rising laid alongside to accommodate for greater loadings in future phases – as far as the gravity public infrastructure upstream of the Maynooth municipal WWPS. In order to achieve this, the rising main will need to cross the river Ryewater, adjacent to the new pedestrian / cycle bridge structure that is to be constructed adjacent to the Kildare Bridge. It is proposed that this rising main is to be routed under the river Ryewater, alongside the aforementioned new strategic high pressure rising mains that are to be installed by Irish Water to upgrade the Maynooth WWPS.

Refer to **Figure 4.3** for typical detail of a rising main crossing to the west of the Kildare Bridge structure, as per Irish Water Standard Detail Drawing Nr. STD-WW-24, details of which are to be agreed with Irish Water at connection offer stage. The construction methodology proposed is aligned with Irish Water's proposals for the separate Strategic Capital Programme rising main.

Figure 4.3 - Typical Detail of Rising Main Crossing at Bridge

Project: S665 Issued: 26-Aug-22

Refer to OCSC Bridge Options Report, S665-OCSC-XX-XX-RP-C-0010, submitted separately to this ESR, for detailed discussion on the proposed bridges.

4.6 Wastewater Pumping Station

A new underground strategic wastewater pumping station (WWPS) is to be constructed on Applicant-owned lands, to the east of the proposed development site. Following discussions with Irish Water, the new WWPS has been sited at a location that is optimised for serving the wider Maynooth Environs lands, and is to be designed to allow for future expansion as additional development phases are brought through for planning and construction.

Design details of the new underground wastewater pumping station shall be agreed with Irish Water at new connection application stage, as required.

4.7 Taking In Charge

All new wastewater drainage infrastructure, installed to serve the proposed development **is** to be offered to Irish Water for to be taken-in-charge.

5 POTABLE WATER SUPPLY

5.1 Overview

All proposed potable water design has been carried out in accordance with Irish Water's Code of Practice for Water Infrastructure, IW-CDS-5020-03.

5.2 Consultation

A Pre-Connection Enquiry Form has been submitted to Irish Water for review, for both the proposed development, as well as the wider land holding, which forms part of the Maynooth Environs. Irish Water (IW) issued a Confirmation of Feasibility Letter (Refer Appendix D of this ESR) for the proposed development, subject to upgrade works being carried out.

OCSC and the applicant have continued correspondence with Irish Water with respect to proposed upgrade works, and have committed to working with Irish Water to resolve all infrastructure works in order to facilitate the proposed development.

In addition to all of the above, the detailed network design was issued to Irish Water for review, with a Statement of Design Acceptance issued on 19th August 2022, which is included in **Appendix D** of this ESR.

5.3 Connection to the Existing Network

It is proposed to provide an extension to the existing 200mm ductile iron watermain at Moyglare Close, with a metered 200mm high density polyethylene connection provided to serve the proposed development. This will require the new watermain to cross the river Ryewater by utilising the new bridge structure at Moyglare that is to be constructed as part of the new Maynooth Outer Orbital Road, a section of which is included within this application.

Internal distribution networks of 100mm and 150mm HDPE watermain will be provided to serve the proposed residential units. An extension from the proposed development's watermain will be provided to serve the proposed

crèche facility and scout's den, which are located to the east of the Blackhall Little stream, adjacent to the proposed public park.

Additional capped spurs are to be provided, in order to facilitate for future phasing of development within the wider Maynooth Environs lands.

Figure 5.1 - Existing Public Water Infrastructure

5.4 Water Saving Devices

Water saving devices are to be considered for use within the proposed development units, in order to conserve the use of water, as part of the internal fit-out.

5.5 Water Meters

A bulk water meter is to be provided at the connection to the public watermain, at the development entrance, with individual boundary boxes and meters provided at the connection to each individual property and block of duplexes and apartments. All metering is to be provided in accordance with Irish Water's requirements.

5.6 Taking In Charge

All new watermain infrastructure, installed to serve the proposed development **is** to be offered to Irish Water for to be taken-in-charge.

6 ROADS AND TRAFFIC

6.7 Design Standards

The proposed development will incorporate a series of design measures, which will be detailed hereinafter, to promote more sustainable modes of transport and support vulnerable road users in line with the core principles of the Design Manual for Urban Roads and Streets (DMURS).

While DMURS is the principle design guideline for the road's elements of this project, the extended list of the main standard documents relied on is:

- National Cycle Manual;
- Traffic Signs Manual 2019;
- DN-PAV-03021: Pavement & Foundation Design;
- GE-STY-01024: Road Safety Audit;
- DN-GEO-03060: Geometric Design of Junctions;
- Traffic Management Guidelines
- NRA IAN 02/11 Interim Requirements for the Use of Eurocodes for the Design of Road Structures Amendment No. 1.
- Standards for Cycle Parking and associated Cycling Facilities for New Developments.

6.8 Proposed Road Network

The proposed development includes the creation of a new internal development road network and upgrading of the L6219 and L22143 and the provision of a section (c.500m) of the Maynooth Outer Orbital Route (MOOR) from the River Rye to the proposed residential lands. The proposed works also include a small section of realignment works to the L6219 to tie into the new section of the MOOR and the upgrade of the existing L6219 and L22143 from the residential lands to the creche and public park lands to the east. The upgrade of the L6219 and L22143 will include pedestrian and cycle infrastructure links. The portion of the MOOR as noted previously as part of this application also includes a section of new bridge over the adjacent River Rye that crosses into the jurisdiction of Kildare County Council.

A separate application will be made to Kildare County Council for the provision of the section of MOOR, south of the River Rye that ties into the already constructed section of the MOOR adjacent to Moyglare Hall that is within the Kildare County Council jurisdiction. This separate application will also include for the bridge crossing of the River Rye in Kildare County Council jurisdiction. This overlap of applications will ensure unimpeded access to the proposed development lands for all modes of transport including vehicular and dedicated pedestrian and cyclists' facilities.

The design of the MOOR will take cognisance of the already constructed section adjacent to Moyglare Hall and also ensure consistency with the recently granted Maynooth Eastern Ring Road planning reference P82019-08. The design will implement latest design standards in agreement with Meath County Council Transportation Section.

The development consists of a 5.00-5.50 m wide internal access roads and 6.00m wide roads where perpendicular parking is present in line with Section 4.4.9 of DMURS. The development will access off a new priority type junction on to the L6219. The proposed development entrance will take the form of a simple priority T-Junction. The design of the MOOR and the realignment of the L6219 local road will consist of a carriageway width of 7.0m. Segregated Pedestrian & cyclist infrastructure will be provided along the MOOR, L6219 and L22143.

The segregated pedestrian & cyclist infrastructure proposed along the frontage of the SHD development along the L6219 will provide access from the proposed SHD across the Blackhall Little Stream and provides access to the proposed crèche and public park to the east of the Blackhall Little Stream, tying into to further infrastructure at the junction with the R157. A new standalone pedestrian/cyclist bridge is proposed to be installed across the Blackhall Little Stream providing dedicated access for vulnerable road users. Due to the existing condition of the bridge over the Moygaddy stream this bridge is proposed to be a 3.0m wide standalone structure.

Refer to OCSC Bridge Options Report, S665-OCSC-XX-XX-RP-C-0010, submitted separately to this ESR, for detailed discussion on the proposed bridges.

All junctions will be assessed in detail within the final Traffic Impact Assessment submitted.

6.9 Road Classification

The proposed modifications to the L6219, L22143 and the sections of the MOOR are designed in accordance with the DMURS, with specific consideration given to the sections including:

- Section 4.3.1 Footways, Verges and Strips
- Section 4.3.2 Pedestrian Crossings
- Section 4.3.3 Corner Radii
- Section 4.3.5 Cycle Facilities
- Section 4.4.1 Carriageway Widths
- Section 4.4.2 Carriageway Surfaces
- Section 4.4.3 Junction Design
- Section 4.4.4 Forward Visibility
- Section 4.4.9 On-Street Parking and Loading

Table 3.1 of DMURS illustrates how this road hierarchy relates to other relevant documents. An extract of DMURS can be seen in Figure 6-1, following.

Figure 6-1: DMURS Street Classification

Project: S665 Issued: 26-Aug-22

The MOOR has been designed as per the below Figure 6-2.

DMURS Description	Roads Act/NRA DMRB	Traffic Management Guidelines	National Cycle Manual
Arterial	National	Primary Distributor Roads	Distributor
Link	Regional (see note 1)	District Distributor Local Collector (see Notes 1 and 2)	Local Collector
Local	Local	Access	Access
Notes Note 1: Larger Regional are the main links betwe Note 2: Local Distributor short in length and simpl	/District Distributors may en major centres (i.e. to s may fall into the categ y link a neighbourhood f	fall into the category of wns) or have an orbital f jory of <i>Local</i> street where to the broader street net	Arterial where they function. e they are relatively twork.

Table 3.1: Terminology used within this Manual compared with other key publications.

Figure 6-2: DMURS Street Hierarchy

The internal road layout and L6219/L22143 modifications have been designed as per the below Figure 6-3.

DMURS Description	Roads Act/NRA DMRB	Traffic Management Guidelines	National Cycle Manual				
Arterial	National	Primary Distributor Roads	Distributor				
Link	Regional (see note 1)	District Distributor Local Collector (see Notes 1 and 2)	Local Collector				
Local Local Access Access							
Local	Local	Access	Access				

Table 3.1: Terminology used within this Manual compared with other key publications.

Figure 6-3: DMURS Street Hierarchy

6.10 Road Design Speeds

The MOOR (red) is envisaged to have a Design Speed of 60 kph. This design speed will tie into the recently approved wider strategic road network including the Maynooth Eastern Ring Road planning reference P82019-08 and will also have to be co-ordinated with the existing section of the MOOR already constructed west of the development site adjacent to Moyglare Hall.

It is noted that an additional section of the MOOR that will provide a connection from the works proposed as part of this application, to the section already constructed adjacent to Moyglare Hall will be submitted to Kildare County Council as this is within their jurisdiction.

The L6219/L22143 (green) has been designed to a Design Speed of 50 kph with geometric parameters chosen under DMURS. The internal road network (blue) has been designed to a Design Speed of 10-30 kph with geometric parameters chosen under DMURS. This is reflected in Figure 6-4 below extracted from DMURS, with the MOOR shown in red and the L6219/L22143 shown in green.

Table 4.1: Design speed selection matrix indicating the links between place, movement and speed that need to be taken into account in order to achieve effective and balanced design solutions.

Figure 6-4: DMURS Design Speeds

This proposed design speed ties into the existing speed limits of the surrounding road network.

6.11 Horizontal and Vertical Geometry

The road alignments will be designed so that the geometric elements, including horizontal and vertical curvature, superelevation and sight distance will be in line with DMURS, having values consistent with the design speeds.

The relevant horizontal and vertical geometric design values are shown in DMURS *Table 4.3* below shown below in Table 6-1. A standard carriageway cross fall of 2.5% will be adopted throughout, noting that adverse camber is allowable under DMURS designs in accordance with *Table 4.3*. A cross fall of 2.5% will also be used for footpaths and cycle facilities.

	H		CURVATUR	E		
Design Speed (km/h)	10	20	30	40	50	60
Minimum Radius with adverse camber of 2.5%	-	11	26	56	104	178
Minimum Radius with superelevation of 2.5 %	-	-	-	46	82	136
		VERTICAL	CURVATURE			
Design Speed (km/h)	10	20	30	40	50	60
Crest Curve K Value	N/A	N/A	N/A	2.6	4.7	8.2
Sag Curve K Value	N/A	N/A	2.3	4.1	6.4	9.2

Table 6-1: DMURS Geometric Parameters

Table 4.3: Carriageway geometry parameters for horizontal and vertical curvature.

6.12 Road Cross Section

6.12.5 Carriageway

As mentioned previously, the internal road layout will consist of a 5.00-5.50m wide internal access roads and 6.00m wide roads where perpendicular parking is present within the proposed development in line with section 4.4.9 of DMURS. The proposed MOOR cross section will consist of a 7m carriageway, a 1.5m verge, a 1.75m cycle track and a 2m footpath on both sides of the road. The L6219/L22143 cross section will be similar to the MOOR, with the same dimensions. The only exception is that this footpath and cycle track will only be located on the southern part of the road, with the northern side to be

included in future developments. This has been designed in line with section 4.4.1 of DMURS.

6.12.6 Footpaths

The width of the footpaths has been determined with reference to DMURS *Section 4.3.1* with a minimum required width of 1.8 m based on the space needed for two wheelchairs to pass each other.

6.12.7 Cycle Facilities

The cycle lanes along the MOOR will be designed in accordance with the National Cycle Manual (NCM). Based on the Cycle Width Calculator in the NCM. The appropriate cycle path width will be a minimum of 1.75m giving room for a single file lane with overtaking room. The cycle paths will be separated from traffic by a kerb and verge and there will be a vertical separation on the inside, between the cycle path and footpath.

Within the development, cyclists are accommodated in shared spaces as well as on the roadway, as the speeds and the vehicular volumes are low, in line with the national cycle manual as shown below in figure below.

Figure 6-5: National Cycle Manual - Mixed or Separate

Project: S665 Issued: 26-Aug-22

As discussed previously, the sections of the MOOR as well as the full L6219/L22143 will include segregated cycle tracks and footpaths, which will tie into infrastructure in Kildare County Council on both sides of the MOOR.

6.13 Road Junctions

New junctions where the MOOR and L6219 intersect have been designed as priority-controlled junctions with right-turn lanes for traffic management purposes. Access junctions to the development have also been designed as simple priority junctions with cycle track and footpath infrastructure in line with DMURS. These have been designed with the primary principle of providing safe and consistent layouts to present a uniformity of approach to drivers and other road users. In addition, the junctions have sufficient capacity to accommodate design year peak traffic flows thus optimising network capacity. The primary junction strategy objectives have been:

- To optimise road safety by ensuring adequate visibility and consistency;
- To ensure capacity for the design year;
- To function as traffic calming measures;
- To provide safe crossing facilities for pedestrians and cyclists;
- To provide busses with minimum delays.

6.14 Consultation

OCSC have had interactions with Kildare County Council and Meath County Council on this scheme in relation to the transportation related elements of the scheme, as detailed below:

- OCSC met with Meath County Council on 19 July 2021 to open preliminary discussions on the design of the MOOR. In attendance was Martin Murry (Director of Services for Infrastructure) and Nicholas Whyatt (Senior Engineer Transportation). Since this meeting, a Traffic Modelling Scoping Report has been issues to MCC.
- As noted previously, although the scheme is planned within the Meath County Council jurisdiction, a separate application will be made to KCC for infrastructure within the County. It is however noted that as the

largest nearby urban centre is within KCC jurisdiction, they have been consulted as a stakeholder. OCSC met with KCC on 9 August 2021, and 23 September 2021. In attendance was Brigette Rea, Daragh Conlan, George Willoughby, Jonathan Hennessy, and Lisa Kirwan, all from KCC. The same Traffic Modelling Scoping Report has also been issues to KCC.

- A submission was made on the Maynooth Transport Strategy as part of public consultation no. 1 on the 12th of November 2021. This submission outlines the proposed plans for the area and noted that it should be considered as part of the future Transport Strategy.
- A submission was made to BusConnects on the 15th of November 2021 noting the upcoming proposals as part of the MOOR that noted the BusConnects project should take cognisance of the upcoming works.

OCSC received a number of comments from Meath County Council's Transportation Department as part of their Opinion Report. Following this, further workshopping was done on the MOOR. A meeting was held on 14/07/2022 with various stakeholders at MCC, after which a number of comments were received. Subsequent to this, these comments have been incorporated into the design.

Appendix F of this ESR details the responses to the comments from the Opinion Report, as well as the comments received and addressed as part of the subsequent MOOR design meeting.

6.15 Traffic Impact

A Traffic Impact Assessment will be carried out which considers the current traffic flows and capacity in accordance with the Traffic and Transport Assessment Guidelines May 2014 from Transport Infrastructure Ireland. The Traffic Impact Assessment will be done by means of Vissim Micro-Simulation software at the request of Kildare County Council. More details of the TIA can be found in the TIA document submitted under separate cover.

6.16 Site Accessibility

The subject site will be linked to Maynooth Town Centra via the proposed section of the MOOR as part of this application and the Moyglare Road. New dedicated pedestrian and cyclist infrastructure will be provided along the proposed section of the Maynooth Outer Relief Road (MOOR) & within the internal development. All footpaths within the development will be a minimum of 1.80m wide and will run parallel to the proposed road infrastructure The SHD site will be serviced by way of two uncontrolled junctions that will access the L6219.

The provision of infrastructure on the MOOR will include a 7.0m carriageway, 1.5m verge, footpath and also cycle tracks designed per the National Cycle Manual.

Pedestrian and cyclist infrastructure will also be provided along the L6219/L22143 linking the residential lands to the creche and public parklands to the east.

Figure 6-6: Site Layout

Project: S665 Issued: 26-Aug-22

INTENTIONALLY BLANK

APPENDIX A. QBAR Calculation and Rainfall Data

O'Connor Sutton Cronin		Page 1
9 Prussia Street	Moygaddy Castle SHD	
Dublin 7		
Ireland		Micro
Date 23/11/2021 09:40	Designed by RP	Dcainago
File	Checked by MK	Diamade
XP Solutions	Source Control 2020.1	
ICP SUD	S Mean Annual Flood	
	Input	
Return Period (years Area (ha SAAR (mm		
	Results 1/s	
	DBAR Rural 5.6 DBAR Urban 5.6	
	Q2 years 5.4	
	Q1 year 4.8 Q30 years 9.2 Q100 years 10.7	

Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 294126, Northing: 239157, Met Eireann

Interval 6months, 1year,	val 1year,		5	'n	1 4,	י ט י	10,	Years 20,	30,	50 ,	75,	100,	150,	200,	250,	500,
2.4, 3.4, 4.0, 4.9, 3.3, 4.0 5.6 6.0	3.4, 4.0, 4.9, 7.0 7.5 5.0	1 4.0, 4.9, 5.6 6.0	4.9 ,		5.4 ,	5.9.0 .0	10.2	9.2 ,	10.3,	12.0,	13.4,	14.6,	16.4,	17.8,	18.9 ,	N/A ,
3.9, 5.6, 6.5, 8.0,	4.0, 0.0, 0.0, 5.6, 6.5, 8.0,	6.5, 8.0,	8.0 ,		.0. 8.9,	9.7,	12.2,	15.0,	14.4, 16.9,	19.6 ,	22.0,	23.9,	26.9,	29.1,	31.0,	N/A
5.1, 7.3, 8.5, 10.2, 1	7.3, 8.5, 10.2, 1	8.5, 10.2, 1	10.2, 1	H	l.4,	12.3,	15.4,	18.8,	21.1,	24.3,	27.2,	29.4,	32.9,	35.6,	37.8,	N/A ,
6.8, 9.5, 10.9, 13.1, 1	9.5, 10.9, 13.1, 1	10.9, 13.1, 1	13.1, 1	Ч	4.6,	15.7	19.4,	23.6,	26.3,	30.2,	33.6,	36.2,	40.3,	43.4,	46.1,	N/A ,
9.0, 12.3, 14.1, 16.8, 1	12.3, 14.1, 16.8, 18	14.1, 16.8, 18	16.8, 18	Ä	8.6,	20.0,	24.5,	29.5,	32.8,	37.4,	41.4,	44.6,	49.3,	53.0,	56.1,	N/A ,
10.5, 14.4, 16.4, 19.5, 2	14.4, 16.4, 19.5, 2	16.4, 19.5, 2	19.5, 2	\sim	1.5,	23.0,	28.1,	33.7,	37.3,	42.4,	46.9,	50.3,	55.6,	59.6,	63.0,	N/A ,
11.8, 16.1, 18.3, 21.6, 2	16.1, 18.3, 21.6, 2	18.3, 21.6, 2	21.6, 2	\sim	3.8,	25.5,	30.9,	37.0,	40.9,	46.4,	51.1,	54.8,	60.5,	64.8,	68.3,	N/A ,
13.9, 18.7, 21.3, 25.0, 2	18.7, 21.3, 25.0, 2	21.3, 25.0, 2	25.0, 2	\sim	7.5,	29.4,	35.4,	42.2,	46.5,	52.6,	57.9,	61.9,	68.1,	72.8,	76.7,	N/A ,
16.3, 21.9, 24.7, 28.9, 3	21.9, 24.7, 28.9, 3	24.7, 28.9, 3	28.9, 3.	m	1.7,	33.8,	40.6,	48.1,	52.9,	59.6,	65.4,	69.9,	76.7,	81.9,	86.1,	N/A ,
18.3, 24.4, 27.5, 32.1, 35	24.4, 27.5, 32.1, 35	27.5, 32.1, 35	32.1, 35	ŝ	5.1,	37.4,	44.8,	52.8,	58.0,	65.2,	71.4,	76.2,	83.4,	88.9,	93.5,	N/A ,
21.6, 28.4, 32.0, 37.1, 40	28.4, 32.0, 37.1, 40	32.0, 37.1, 40	37.1, 4C	40	.5,	43.1,	51.3,	60.3,	66.0,	73.9,	80.8,	86.0,	93.9,	100.0,	104.9,	N/A ,
24.2, 31.7, 35.6, 41.2, 44	31.7, 35.6, 41.2, 44	35.6, 41.2, 44	41.2, 44	44	,6.	47.7,	56.6,	66.2,	72.4,	80.8,	88.2,	93.8,	102.2,	108.6,	113.9,	131.9,
30.0, 38.5, 42.7, 48.8, 52	38.5, 42.7, 48.8, 52	42.7, 48.8, 52	48.8, 52	52	.8	55.8	65.2,	75.3,	81.7,	90.3,	97.8,	103.4,	111.9,	118.3,	123.5,	141.2,
35.0, 44.2, 48.8, 55.3, 59	44.2, 48.8, 55.3, 59	48.8, 55.3, 59	55.3, 59	59	.5	62.7,	72.6,	83.2,	89.8,	98.8,	106.5,	112.2,	120.9,	127.4,	132.7,	150.5,
39.4, 49.2, 54.1, 61.0, 65	49.2, 54.1, 61.0, 65	54.1, 61.0, 65	61.0, 65	65	.5,	68.9,	79.3,	90.3,	97.2,	106.4,	114.3,	120.3,	129.1,	135.8,	141.2,	159.3,
47.2, 58.3, 63.7, 71.3, 76.	58.3, 63.7, 71.3, 76.	63.7, 71.3, 76.	71.3, 76.	76.	1	79.8,	91.1,	102.9,	110.2,	120.0,	128.4,	134.6,	143.9,	150.8,	156.4,	175.2,
54.3, 66.4, 72.2, 80.4, 85	66.4, 72.2, 80.4, 85	72.2, 80.4, 85	80.4, 85	85		89.6,	101.6,	114.1,	121.8,	132.2,	140.9,	147.4,	157.1,	164.3,	170.1,	189.5,
61.0, 73.9, 80.2, 88.9, 94	73.9, 80.2, 88.9, 94	80.2, 88.9, 94	88.9, 94	94	.4,	98.6,	111.3,	124.4,	132.5,	143.3,	152.4,	159.1,	169.2,	176.6,	182.6,	202.6,
67.3, 81.0, 87.6, 96.8, 102	81.0, 87.6, 96.8, 102	87.6, 96.8, 102	96.8, 102	102		107.0,	120.3,	134.1,	142.5,	153.7,	163.1,	170.1,	180.5,	188.2,	194.4,	214.9,
79.1, 94.3, 101.6, 111.7, 118	94.3, 101.6, 111.7, 118	101.6, 111.7, 118	111.7, 118	118	.1,	122.8,	137.2,	152.0,	161.0,	173.0,	183.0,	190.4,	201.4,	209.5,	216.0,	237.6,
90.3, 106.8, 114.7, 125.6, 132	106.8, 114.7, 125.6, 132	114.7, 125.6, 132	125.6, 132	132	.4,	137.5,	152.9,	168.5,	178.1,	190.8,	201.3,	209.1,	220.6,	229.1,	235.9,	258.4,
103.6, 121.6, 130.2, 141.9, 149	121.6, 130.2, 141.9, 149	130.2, 141.9, 149	141.9, 149	149	т. С	154.7,	171.2,	187.9,	198.1,	211.5,	222.7,	230.9,	243.0,	251.9,	259.1,	282.6,
not available	le															

These values are derived from a Depth Duration Frequency (DDF) Model For details refer to: 'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

APPENDIX B. Surface Water Design Criteria and Simulation Results

O'Connor Sutton Cronin		Page 1
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

$\underline{\texttt{STORM}}$ SEWER DESIGN by the Modified Rational Method

Design Criteria for Surface Water1

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall 1	Model -	Scotland and Ireland	
Return Period (years)	5	PIMP (%)	100
M5-60 (mm)	15.700	Add Flow / Climate Change (%)	20
Ratio R	0.281	Minimum Backdrop Height (m)	0.200
Maximum Rainfall (mm/hr)	50	Maximum Backdrop Height (m)	1.500
Maximum Time of Concentration (mins)	30	Min Design Depth for Optimisation (m)	1.200
Foul Sewage (l/s/ha)	0.000	Min Vel for Auto Design only (m/s)	1.00
Volumetric Runoff Coeff.	0.750	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Surface Water1

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-1.000	70.155	0.286	245.0	0.103	4.00	0.0	0.600	0	300	Pipe/Conduit	8
SC-1.001	67.531	0.276	245.0	0.085	0.00	0.0	0.600	0	300	Pipe/Conduit	d
SC-1.002	67.531	0.276	245.0	0.084	0.00	0.0	0.600	0	300	Pipe/Conduit	0
SC-1.003	53.294	0.218	245.0	0.067	0.00	0.0	0.600	0	300	Pipe/Conduit	₽
SC-2.000	31.976	0.188	170.0	0.051	4.00	0.0	0.600	0	225	Pipe/Conduit	8
SC-2.001	15.169	0.089	170.0	0.018	0.00	0.0	0.600	0	225	Pipe/Conduit	ē
SC-2.002	45.442	0.267	170.0	0.062	0.00	0.0	0.600	0	225	Pipe/Conduit	Ð
SC-2.003	19.940	0.199	100.0	0.025	0.00	0.0	0.600	0	225	Pipe/Conduit	Ð
SC-2.004	48.265	0.541	89.2	0.060	0.00	0.0	0.600	0	225	Pipe/Conduit	Ð
SC-1.004	11.618	0.036	325.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	æ
SC-1.005	20.192	0.062	325.0	0.080	0.00	0.0	0.600	0	375	Pipe/Conduit	-
SC-1.006	48.741	0.119	410.0	0.158	0.00	0.0	0.600	0	450	Pipe/Conduit	æ
SC-3.000	29.015	0.580	50.0	0.082	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-3.001	33.444	0.458	73.1	0.056	0.00	0.0	0.600	0	225	Pipe/Conduit	ē

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
SC-1.000	50.00	5.17	55.461	0.103	0.0	0.0	2.8	1.00	70.7	16.7
SC-1.001	50.00	6.29	55.175	0.187	0.0	0.0	5.1	1.00	70.7	30.4
SC-1.002	50.00	7.42	54.899	0.271	0.0	0.0	7.3	1.00	70.7	44.1
SC-1.003	48.30	8.31	54.623	0.338	0.0	0.0	8.8	1.00	70.7	53.0
SC-2.000	50.00	4.53	55.766	0.051	0.0	0.0	1.4	1.00	39.8	8.3
SC-2.001	50.00	4.79	55.578	0.069	0.0	0.0	1.9	1.00	39.8	11.1
SC-2.002	50.00	5.54	55.489	0.131	0.0	0.0	3.5	1.00	39.8	21.2
SC-2.003	50.00	5.80	55.221	0.156	0.0	0.0	4.2	1.31	52.0	25.3
SC-2.004	50.00	6.38	55.022	0.216	0.0	0.0	5.8	1.39	55.1	35.1
SC-1.004	47.80	8.50	54.331	0.554	0.0	0.0	14.3	1.00	110.4	86.0
SC-1.005	46.96	8.84	54.295	0.634	0.0	0.0	16.1	1.00	110.4	96.7
SC-1.006	45.08	9.65	54.158	0.791	0.0	0.0	19.3	1.00	158.7	115.9
SC-3.000	50.00	4.26	55.302	0.082	0.0	0.0	2.2	1.85	73.7	13.4
SC-3.001	50.00	4.62	54.722	0.138	0.0	0.0	3.7	1.53	60.9	22.4

O'Connor Sutton Cronin		Page 2
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	*

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-1.007	14.851	0.036	410.0	0.032	0.00	0.0	0.600	0	450	Pipe/Conduit	ď
SC-1.008	20.551	0.050	410.0	0.037	0.00	0.0	0.600	0	450	Pipe/Conduit	- The second sec
SC-1.009	22.255	0.045	495.0	0.060	0.00	0.0	0.600	0	525	Pipe/Conduit	- The second sec
SC-1.010	16.582	0.033	495.0	0.037	0.00	0.0	0.600	0	525	Pipe/Conduit	ð
SC-4.000	67.465	0.452	149.3	0.178	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-5.000	14.655	0.100	146.5	0.000	4.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-5.001	35.729	0.285	125.4	0.247	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-5.002	10.336	0.042	245.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
SC-5.003	8.703	0.100	87.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
SC-5.004	64.785	0.368	176.0	0.252	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
SC-6.000	25.481	0.303	84.1	0.041	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-5.005	15.327	0.047	325.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
SC-5.006	62.032	0.238	260.6	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	d°
SC-5.007	15.019	0.046	325.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
SC-5.008	10.800	0.327	33.0	0.000	0.00	0.0	0.600	0	375	Pipe/Conduit	ď
SC-4.001	12.337	0.047	262.5	0.006	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
SC-7.000	15.581	0.180	86.6	0.088	4.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-7.001	24.294	0.206	117.9	0.097	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-7.002	43.183	0.797	54.2	0.119	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-8.000	7.990	0.054	148.0	0.071	4.00	0.0	0.600	0	225	Pipe/Conduit	P
SC-8.001	10.787	0.068	158.6	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ð

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(l/s)
SC-1.007	44.54	9.90	54.039	0.961	0.0	0.0	23.2	1.00	158.7	139.1
SC-1.008	43.82	10.24	54.003	0.998	0.0	0.0	23.7	1.00	158.7	142.1
SC-1.009	43.08	10.62	53.878	1.058	0.0	0.0	24.7	1.00	216.5	148.2
SC-1.010	42.55	10.89	53.833	1.095	0.0	0.0	25.2	1.00	216.5	151.4
SC-4.000	50.00	5.05	54.549	0.178	0.0	0.0	4.8	1.07	42.5	28.9
SC-5.000	50.00	4.23	55.651	0.000	0.0	0.0	0.0	1.08	42.9	0.0
SC-5.001	50.00	4.74	55.551	0.247	0.0	0.0	6.7	1.17	46.4	40.2
SC-5.002	50.00	4.91	55.191	0.247	0.0	0.0	6.7	1.00	70.7	40.2
SC-5.003	50.00	5.00	55.149	0.247	0.0	0.0	6.7	1.69	119.2	40.2
SC-5.004	50.00	5.91	55.049	0.500	0.0	0.0	13.5	1.18	83.5	81.2
SC-6.000	50.00	4.30	55.059	0.041	0.0	0.0	1.1	1.43	56.7	6.7
SC-5.005	50.00	6.16	54.606	0.541	0.0	0.0	14.7	1.00	110.4	87.9
SC-5.006	50.00	7.09	54.559	0.541	0.0	0.0	14.7	1.12	123.4	87.9
SC-5.007	50.00	7.34	54.321	0.541	0.0	0.0	14.7	1.00	110.4	87.9
SC-5.008	50.00	7.40	54.274	0.541	0.0	0.0	14.7	3.16	349.5	87.9
SC-4.001	50.00	7.58	53.947	0.725	0.0	0.0	19.6	1.11	123.0	117.8
SC-7.000	50.00	4.18	55.775	0.088	0.0	0.0	2.4	1.41	55.9	14.2
SC-7.001	50.00	4.52	55.595	0.185	0.0	0.0	5.0	1.20	47.8	30.0
SC-7.002	50.00	4.93	55.389	0.304	0.0	0.0	8.2	1.78	70.8	49.4
SC-8.000	50.00	4.12	55.175	0.071	0.0	0.0	1.9	1.07	42.6	11.5
SC-8.001	50.00	4.30	55.121	0.071	0.0	0.0	1.9	1.04	41.2	11.5

O'Connor Sutton Cronin		Page 3
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	nse (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-8.002	10.702	0.069	155.1	0.165	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
SC-8.003	27.783	0.200	138.9	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	<u>.</u>
SC-8.004	11.294	0.192	59.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
SC-7.003	17.586	0.054	325.0	0.081	0.00		0.0	0.600	0	375	Pipe/Conduit	ð
SC-7.004	46.359	0.489	94.8	0.039	0.00		0.0	0.600	0	375	Pipe/Conduit	ď
SC-4.002	10.027	0.058	172.9	0.147	0.00		0.0	0.600	0	525	Pipe/Conduit	đ
SC-4.003	46.290	2.007	23.1	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	d
SC-4.004	19.403	0.033	590.0	0.018	0.00		0.0	0.600	0	600	Pipe/Conduit	ď
SC-4.005	21.657	0.037	590.0	0.023	0.00		0.0	0.600	0	600	Pipe/Conduit	d
SC-4.006	8.450	0.014	590.0	0.016	0.00		0.0	0.600	0	600	Pipe/Conduit	ď
SC-1.011	13.585	0.023	590.0	0.033	0.00		0.0	0.600	0	675	Pipe/Conduit	ď
SC-9.000	9.262	0.232	40.0	0.106	4.00		0.0	0.600	0	225	Pipe/Conduit	ď
SC-9.001	11.038	0.276	40.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-9.002	7.827	0.196	40.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-9.003	7.795	0.195	40.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
SC-9.004	9.559	0.239	40.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-9.005	9.646	0.276	35.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	್
SC-9.006	14.497	0.362	40.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	್
SC-9.007	10.280	0.272	37.8	0.082	0.00		0.0	0.600	0	225	Pipe/Conduit	đ
SC-1.012	11.288	0.057	198.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	ď
SC-1.013	20.495	0.030	675.0	0.000	0.00		0.0	0.600	0	750	Pipe/Conduit	<u> </u>
SC-1.014	4.215	0.025	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	<u> </u>
SC-1.015	37.359	0.220	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
SC-8.002	50.00	4.47	55.053	0.235	0.0	0.0	6.4	1.05	41.6	38.2
SC-8.003	50.00	4.89	54.984	0.235	0.0	0.0	6.4	1.11	44.0	38.2
SC-8.004	50.00	5.00	54.784	0.235	0.0	0.0	6.4	1.71	67.8	38.2
SC-7.003	50.00	5.29	54.442	0.620	0.0	0.0	16.8	1.00	110.4	100.8
SC-7.004	50.00	5.70	54.388	0.659	0.0	0.0	17.8	1.86	205.6	107.1
SC-4.002	50.00	7.68	53.749	1.531	0.0	0.0	41.5	1.70	368.1	248.7
SC-4.003	49.55	7.84	53.691	1.531	0.0	0.0	41.5	4.68	1012.7	248.7
SC-4.004	48.66	8.17	51.609	1.548	0.0	0.0	41.5	1.00	281.4	248.7
SC-4.005	47.72	8.53	51.576	1.571	0.0	0.0	41.5	1.00	281.4	248.7
SC-4.006	47.37	8.67	51.540	1.586	0.0	0.0	41.5	1.00	281.4	248.7
SC-1.011	42.15	11.10	51.450	2.714	0.0	0.0	62.0	1.07	383.5	371.8
SC-9.000	50.00	4.07	53.924	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.001	50.00	4.16	53.692	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.002	50.00	4.23	53.417	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.003	50.00	4.29	53.221	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.004	50.00	4.37	53.026	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.005	50.00	4.44	52.787	0.106	0.0	0.0	2.9	2.22	88.2	17.2
SC-9.006	50.00	4.55	52.511	0.106	0.0	0.0	2.9	2.07	82.5	17.2
SC-9.007	50.00	4.63	52.149	0.188	0.0	0.0	5.1	2.13	84.9	30.6
SC-1.012	41.96	11.20	51.427	2.902	0.0	0.0	66.0	1.86	665.2	395.8
SC-1.013	41.38	11.52	51.295	2.902	0.0	0.0	66.0	1.07	472.5	395.8
SC-1.014	50.00	4.07	51.265	0.000	16.0	0.0	2.7	1.00	39.8	16.0
SC-1.015	50.00	4.69	51.240	0.000	16.0	0.0	3.2	1.00	39.8	19.2
				©1982-2	020 Innov	yze				

O'Connor Sutton Cronin		Page 4
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	•

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-1.016	5.914	0.035	170.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	P
SC-1.017	31.965	0.188	170.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ď
SC-10.000	23.507	0.138	170.0	0.068	4.00	0.0	0.600	0	225	Pipe/Conduit	r
SC-10.001	30.266	0.416	72.8	0.080	0.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-11.000	27.005	0.399	67.7	0.204	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-12.000	33.621	0.198	170.0	0.163	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-13.000	24.266	0.233	104.1	0.114	4.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-12.001	8.025	0.047	170.0	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	æ
SC-12.002	61.170	0.250	245.0	0.089	0.00	0.0	0.600	0	300	Pipe/Conduit	ð
SC-11.001	20.547	0.063	325.0	0.071	0.00	0.0	0.600	0	375	Pipe/Conduit	đ
SC-11.002	22.078	0.188	117.2	0.117	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
SC-10.002	28.229	0.494	57.1	0.060	0.00	0.0	0.600	0	375	Pipe/Conduit	P
SC-10.003	11.091	0.167	66.4	0.000	0.00	0.0	0.600	0	450	Pipe/Conduit	Ū
SC-14.000	15.831	0.093	170.0	0.099	4.00	0.0	0.600	0	225	Pipe/Conduit	0
SC-14.001	9.322	0.055	170.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	ð
SC-10.004	22.717	0.076	300.0	0.033	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
SC-10.005	12.876	0.043	300.0	0.000	0.00	0.0	0.600	0	525	Pipe/Conduit	ē
SC-15.000	25.645	0.322	79.6	0.108	4.00	0.0	0.600	0	225	Pipe/Conduit	đ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (1/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
SC-1.016	50.00	4.79	51.020	0.000	16.0	0.0	3.2	1.00	39.8	19.2
SC-1.017	50.00	5.32	50.985	0.000	16.0	0.0	3.2	1.00	39.8	19.2
SC-10.000	50.00	4.39	54.862	0.068	0.0	0.0	1.8	1.00	39.8	11.0
SC-10.001	50.00	4.72	54.724	0.148	0.0	0.0	4.0	1.53	61.0	24.0
SC-11.000	50.00	4.28	55.348	0.204	0.0	0.0	5.5	1.59	63.3	33.1
SC-12.000	50.00	4.56	55.054	0.163	0.0	0.0	4.4	1.00	39.8	26.4
SC-13.000	50.00	4.32	55.089	0.114	0.0	0.0	3.1	1.28	50.9	18.6
SC-12.001	50.00	4.67	54.781	0.277	0.0	0.0	7.5	1.20	85.0	45.0
SC-12.002	50.00	5.69	54.734	0.366	0.0	0.0	9.9	1.00	70.7	59.4
SC-11.001	50.00	6.03	54.409	0.640	0.0	0.0	17.3	1.00	110.4	104.1
SC-11.002	50.00	6.25	54.346	0.757	0.0	0.0	20.5	1.67	184.8	123.0
SC-10.002	50.00	6.45	54.157	0.965	0.0	0.0	26.1	2.40	265.2	156.8
SC-10.003	50.00	6.52	53.588	0.965	0.0	0.0	26.1	2.50	397.2	156.8
SC-14.000	50.00	4.26	51.372	0.099	0.0	0.0	2.7	1.00	39.8	16.1
SC-14.001	50.00	4.42	51.279	0.099	0.0	0.0	2.7	1.00	39.8	16.1
SC-10.004	50.00	6.85	50.999	1.097	0.0	0.0	29.7	1.17	185.8	178.3
SC-10.005	50.00	7.01	50.848	1.097	0.0	0.0	29.7	1.29	278.8	178.3
SC-15.000	50.00	4.29	55.307	0.108	0.0	0.0	2.9	1.47	58.3	17.6

©1982-2020 Innovyze

O'Connor Sutton Cronin		Page 5
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	·

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-15.001	34.082	0.434	78.5	0.058	0.00		0.0	0.600	0	225	Pipe/Conduit	đ
SC-15.002	23.116	0.176	131.2	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
SC-16.000	66.822	0.924	72.3	0.245	4.00		0.0	0.600	0	225	Pipe/Conduit	đ
SC-16.001	12.301	0.123	100.0	0.053	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-16.002	8.470	0.059	143.6	0.076	0.00		0.0	0.600	0	300	Pipe/Conduit	Ē
SC-16.003	22.822	0.093	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	đ
SC-15.003	5.386	0.022	246.5	0.036	0.00		0.0	0.600	0	375	Pipe/Conduit	d
SC-15.004	30.715	0.368	83.6	0.080	0.00		0.0	0.600	0	375	Pipe/Conduit	ď
SC-17.000	13.131	0.089	148.3	0.061	4.00		0.0	0.600	0	225	Pipe/Conduit	ீ
SC-15.005	8.299	0.020	410.0	0.053	0.00		0.0	0.600	0	450	Pipe/Conduit	ď
SC-15.006	3.254	0.008	410.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	d
SC-15.007	9.819	0.057	172.3	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	d
SC-15.008	3.273	0.019	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-15.009	49.639	0.292	170.0	0.133	0.00		0.0	0.600	0	225	Pipe/Conduit	<u>d</u>
SC-15.010	9.955	0.059	170.0	0.005	0.00		0.0	0.600	0	225	Pipe/Conduit	Ū
SC-18.000	54.814	0.664	82.6	0.164	4.00		0.0	0.600	0	225	Pipe/Conduit	ď
SC-18.001	45.965	0.314	146.4	0.024	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-18.002	9.401	0.055	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	<u> </u>
SC-18.003	47.583	0.194	245.0	0.139	0.00		0.0	0.600	0	300	Pipe/Conduit	<u>.</u>
SC-18.004	22.556	0.092	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	- Ē
SC-18.005	8.382	0.034	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	Ē
SC-15.011	50.333	0.123	410.0	0.194	0.00		0.0	0.600	0	450	Pipe/Conduit	đ

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(1/s)	(1/s)	(m/s)	(l/s)	(l/s)
SC-15.001	50.00	4.68	54.985	0.166	0.0	0.0	4.5	1.48	58.7	27.0
SC-15.002	50.00	5.01	54.551	0.166	0.0	0.0	4.5	1.14	45.3	27.0
SC-16.000	50.00	4.72	55.574	0.245	0.0	0.0	6.6	1.54	61.2	39.8
SC-16.001	50.00	4.88	54.650	0.298	0.0	0.0	8.1	1.31	52.0	48.5
SC-16.002	50.00	4.99	54.452	0.374	0.0	0.0	10.1	1.31	92.6	60.8
SC-16.003	50.00	5.37	54.393	0.374	0.0	0.0	10.1	1.00	70.7	60.8
SC-15.003	50.00	5.45	54.225	0.576	0.0	0.0	15.6	1.15	127.0	93.7
SC-15.004	50.00	5.70	54.203	0.656	0.0	0.0	17.8	1.98	219.0	106.6
SC-17.000	50.00	4.20	54.074	0.061	0.0	0.0	1.7	1.07	42.6	9.9
SC-15.005	50.00	5.84	53.760	0.770	0.0	0.0	20.8	1.00	158.7	125.1
SC-15.006	50.00	5.90	53.740	0.770	0.0	0.0	20.8	1.00	158.7	125.1
SC-15.007	50.00	6.00	53.732	0.770	0.0	0.0	20.8	1.55	245.9	125.1
SC-15.008	50.00	4.05	53.675	0.000	4.2	0.0	0.7	1.00	39.8	4.2
SC-15.009	50.00	4.88	53.656	0.133	4.2	0.0	4.4	1.00	39.8	26.7
SC-15.010	50.00	5.05	53.364	0.138	4.2	0.0	4.6	1.00	39.8	27.5
SC-18.000	50.00	4.63	53.560	0.164	0.0	0.0	4.4	1.44	57.3	26.7
SC-18.001	50.00	5.34	52.896	0.188	0.0	0.0	5.1	1.08	42.9	30.5
SC-18.002	50.00	5.50	52.582	0.188	0.0	0.0	5.1	1.00	39.8	30.5
SC-18.003	50.00	6.29	52.452	0.327	0.0	0.0	8.9	1.00	70.7	53.1
SC-18.004	50.00	6.67	52.257	0.327	0.0	0.0	8.9	1.00	70.7	53.1
SC-18.005	50.00	6.81	52.165	0.327	0.0	0.0	8.9	1.00	70.7	53.1
SC-15.011	50.00	7.65	51.981	0.659	4.2	0.0	18.7	1.00	158.7	112.2

©1982-2020 Innovyze

O'Connor Sutton Cronin		Page 6
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
SC-15.012	10.038	0.024	410.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	ď
SC-10.006	13.342	1.767	7.6	0.000	0.00		0.0	0.600	0	525	Pipe/Conduit	đ
SC-10.007	7.049	0.012	590.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	Ē
SC-10.008	52.920	0.090	590.0	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	e 🚡
SC-10.009	1.387	0.002	589.8	0.000	0.00		0.0	0.600	0	675	Pipe/Conduit	Ē
SC-10.010	5.144	0.030	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	Ē
SC-10.011	40.116	0.236	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ď
SC-19.000	10.392	0.432	24.1	0.109	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
SC-20.000	68.361	0.402	170.0	0.082	4.00		0.0	0.600	0	225	Pipe/Conduit	đ
SC-20.001	43.222	0.254	170.0	0.156	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
SC-20.002	32.004	0.131	245.0	0.028	0.00		0.0	0.600	0	300	Pipe/Conduit	ð
SC-20.003	48.350	0.197	245.0	0.049	0.00		0.0	0.600	0	300	Pipe/Conduit	ð
SC-21.000	26.231	0.154	170.0	0.063	4.00		0.0	0.600	0	225	Pipe/Conduit	8
SC-21.001	26.231	0.154	170.0	0.034	0.00		0.0	0.600	0	225	Pipe/Conduit	6
SC-21.002	47.755	0.281	170.0	0.083	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
SC-20.004	72.578	0.223	325.0	0.078	0.00		0.0	0.600	0	375	Pipe/Conduit	്
SC-19.001	21.802	0.128	170.3	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	0
SC-19.002	43.313	0.255	170.0	0.000	0.00		0.0	0.600	0	375	Pipe/Conduit	d
SC-19.003	33.434	0.197	169.7	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	đ
SC-19.004	18.452	0.109	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d
SC-19.005	6.891	0.041	170.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	d

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
SC-15.012	49.62	7.82	51.858	0.659	4.2	0.0	18.7	1.00	158.7	112.2
SC-10.006 SC-10.007 SC-10.008 SC-10.009	49.55 49.24 47.11 47.06 50.00	7.85 7.96 8.78 8.80 4.09	50.805 48.888 48.876 48.787 48.784	1.756 1.756 1.756 1.756	4.2 4.2 4.2 4.2 4.2	0.0 0.0 0.0 0.0	48.0 48.0 48.0 48.0	8.19 1.07 1.07 1.07	1772.1 383.5 383.5 383.6 39.8	287.9 287.9 287.9 287.9 287.9
SC-10.011	50.00	4.75	48.754	0.000	9.7	0.0	1.9	1.00	39.8	11.6
SC-19.000	50.00	4.06	53.886	0.109	0.0	0.0	2.9	2.68	106.5	17.7
SC-20.000 SC-20.001 SC-20.002 SC-20.003	50.00 50.00 50.00 50.00	5.14 5.86 6.39 7.20	55.343 54.941 54.612 54.481	0.082 0.238 0.265 0.314	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	2.2 6.4 7.2 8.5	1.00 1.00 1.00 1.00	39.8 39.8 70.7 70.7	13.3 38.6 43.1 51.1
SC-21.000 SC-21.001 SC-21.002	50.00 50.00 50.00	4.44 4.87 5.67	54.245 54.091 53.936	0.063 0.097 0.180	0.0 0.0 0.0	0.0 0.0 0.0	1.7 2.6 4.9	1.00 1.00 1.00	39.8 39.8 39.8	10.3 15.7 29.2
SC-20.004	48.04	8.41	53.505	0.572	0.0	0.0	14.9	1.00	110.4	89.3
SC-19.001 SC-19.002 SC-19.003 SC-19.004 SC-19.005	47.37 46.12 50.00 50.00 50.00	8.67 9.19 4.56 4.86 4.98	53.282 53.154 52.899 52.702 52.594	0.681 0.681 0.000 0.000 0.000	0.0 0.0 3.7 3.7 3.7	0.0 0.0 0.0 0.0	17.5 17.5 0.6 0.7 0.7	1.39 1.39 1.00 1.00 1.00	153.0 153.2 39.8 39.8 39.8	104.8 104.8 3.7 4.4 4.4

O'Connor Sutton Cronin		Page 7
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	1

Area	Summary	for	Surface	Water1

Pipe	Ţ	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	5	Гуре	Name	(%)	Area (ha)	Area (ha)	(ha)
1.000	As	Zoned	Default	100	0.043	0.043	0.043
			Road	100	0.060	0.060	0.103
1.001	As	Zoned	Default	100	0.035	0.035	0.035
1 000	_		Road	100	0.049	0.049	0.085
1.002	As	Zoned	Default	100	0.031	0.031	0.031
1 002	7.0	Zanad	Road	100	0.053	0.053	0.084
1.005	AS	Zonea	Boad	100	0.028	0.028	0.028
2,000	As	Zoned	Default	100	0.021	0.021	0.021
			Road	100	0.030	0.030	0.051
2.001	As	Zoned	Default	100	0.008	0.008	0.008
			Road	100	0.010	0.010	0.018
2.002	As	Zoned	Default	100	0.027	0.027	0.027
			Road	100	0.035	0.035	0.062
2.003	As	Zoned	Default	100	0.011	0.011	0.011
	_		Road	100	0.015	0.015	0.025
2.004	As	Zoned	Default	100	0.026	0.026	0.026
1 004			Road	100	0.034	0.034	0.060
1.004	Ac	- Zoned	Default	100	0.000	0.000	0.000
1.005	лэ	Zoneu	Building	100	0.025	0.025	0.025
			Road	100	0.011	0.011	0.000
			Parking	70	0.014	0.009	0.080
1.006	As	Zoned	Default	100	0.064	0.064	0.064
			Building	100	0.050	0.050	0.114
			Road	100	0.028	0.028	0.142
			Parking	70	0.023	0.016	0.158
3.000	As	Zoned	Default	100	0.006	0.006	0.006
			Building	100	0.033	0.033	0.040
			Road	100	0.033	0.033	0.073
2 001	7 -	F]	Parking	100	0.013	0.009	0.082
3.001	AS	zonea	Derault	100	0.018	0.018	0.018
			Parking	70	0.038	0.038	0.056
1,007	As	Zoned	Road	100	0.029	0.029	0.029
1.007	110	201100	Parking	70	0.005	0.003	0.032
1.008	As	Zoned	Building	100	0.014	0.014	0.014
			Road	100	0.035	0.035	0.049
			Parking	70	0.005	0.004	0.037
1.009	As	Zoned	Default	100	0.014	0.014	0.014
			Building	100	0.027	0.027	0.041
			Road	100	0.013	0.013	0.054
1 010			Parking	70	0.010	0.007	0.060
1.010	AS	zonea	Derault	100	0.012	0.012	0.012
			Building	100	0.018	0.018	0.028
			Parking	70	0.000	0.000	0.037
4.000	As	Zoned	Default	100	0.033	0.033	0.033
			Building	100	0.033	0.033	0.067
			Road	100	0.031	0.031	0.098
			Parking	70	0.013	0.009	0.107
	As	Zoned	Default	100	0.022	0.022	0.129
			Building	100	0.027	0.027	0.156
			Road	100	0.014	0.014	0.170
			Parking	70	0.011	0.008	0.178
5.000	7	-		100	0.000	0.000	0.000
5.001	AS A C	20ned	Building	100	0.078	0.078	0.0/8
	лS	Loned	Road	100	0.078	0.078	0.133
			Parking	70	0.029	0.020	0.126
	As	Zoned	Default	100	0.014	0.014	0.217
			Building	100	0.030	0.030	0.247
			_				

©1982-2020 Innovyze

O'Connor Sutton Cronin		Page 8
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamaye
XP Solutions	Network 2020.1.3	

1	Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
	5.002	_	-	100	0.000	0.000	0.000
	5.003	-	-	100	0.000	0.000	0.000
	5.004	As Zoned	Default	100	0.103	0.103	0.103
			Building	100	0.089	0.089	0.192
			Boad	100	0 035	0 035	0 226
			Domising	200	0.035	0.035	0.220
	c 000		Parking	100	0.030	0.025	0.252
	6.000	As Zoned	Default	100	0.041	0.041	0.041
	5.005	-	-	100	0.000	0.000	0.000
	5.006	-	-	100	0.000	0.000	0.000
	5.007	-	-	100	0.000	0.000	0.000
	5.008	-	-	100	0.000	0.000	0.000
	4.001	As Zoned	Default	100	0.001	0.001	0.001
			Road	100	0.005	0.005	0.006
	7 000	As Zoned	Default	100	0.035	0.035	0.035
	1.000	AS Zoneu	Delauic	100	0.035	0.035	0.033
			Bullaing	100	0.038	0.038	0.072
			Road	100	0.010	0.010	0.082
			Parking	70	0.007	0.005	0.088
	7.001	As Zoned	Default	100	0.022	0.022	0.022
			Building	100	0.046	0.046	0.068
			Road	100	0.013	0.013	0.081
			Parking	70	0 023	0 016	0 097
	7 002	As Zoned	Default	100	0.023	0.010	0.053
	7.002	AS Zoneu	Deiduic	100	0.000	0.000	0.000
			Bullaing	100	0.040	0.040	0.093
			Road	100	0.021	0.021	0.114
			Parking	70	0.008	0.006	0.119
	8.000	As Zoned	Default	100	0.071	0.071	0.071
	8.001	-	-	100	0.000	0.000	0.000
	8.002	As Zoned	Default	100	0.059	0.059	0.059
			Building	100	0.060	0.060	0.119
			Road	100	0 027	0 027	0 146
			Darking	200	0 026	0 019	0 165
	0 000		FAIKING	100	0.020	0.018	0.103
	8.003	-	-	100	0.000	0.000	0.000
	8.004	_		100	0.000	0.000	0.000
	7.003	As Zoned	Default	100	0.081	0.081	0.081
	7.004	As Zoned	Default	100	0.018	0.018	0.018
			Road	100	0.021	0.021	0.039
	4.002	As Zoned	Default	100	0.036	0.036	0.036
			Building	100	0.053	0.053	0.089
			Road	100	0.030	0.030	0.118
			Parking	70	0.019	0.013	0.132
		As Zoned	Defaul+	100	0 015	0 015	0 147
		112 JOHEO	Derautt	100	0.010	0.010	0.147
	4 000		коад	100	0.000	0.000	0.14/
	4.003	-	-	100	0.000	0.000	0.000
	4.004	AS Zoned	Detault	100	0.008	0.008	0.008
			Road	100	0.009	0.009	0.018
	4.005	As Zoned	Default	100	0.012	0.012	0.012
			Road	100	0.010	0.010	0.023
	4.006	As Zoned	Default	100	0.007	0.007	0.007
			Road	100	0.009	0.009	0.016
	1,011	As Zoned	Defaul+	100	0.009	0.009	0 009
			Building	100	0 016	0 016	0 025
			Darraring	100	0.010	0.010	0.023
			Road	100	0.004	0.004	0.029
			Parking	/0	0.005	0.003	0.033
	9.000	As Zoned	Default	100	0.045	0.045	0.045
			Building	100	0.024	0.024	0.069
			Road	100	0.033	0.033	0.102
			Parking	70	0.005	0.003	0.106
	9.001	_		100	0,000	0.000	0.000
	9 002	_	-	100	0 000	0 000	0 000
	0.002	_	-	100	0.000	0.000	0.000
	9.003	-	-	100	0.000	0.000	0.000
	9.004	-	-	100	0.000	0.000	0.000
				4 0 0	0 000	0 000	

Area Summary for Surface Water1

O'Connor Sutton Cronin		Page 9
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total	
Number	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
9.006	_	-	100	0.000	0.000	0.000	
9.007	As Zoned	Default	100	0.021	0.021	0.021	
		Building	100	0.033	0.033	0.054	
		Road	100	0.022	0.022	0.076	
		Parking	70	0.010	0.007	0.082	
1.012	_		100	0.000	0.000	0.000	
1 013	-	-	100	0 000	0 000	0 000	
1 014	-	-	100	0.000	0.000	0 000	
1 015	_	_	100	0.000	0.000	0.000	
1 016	_	_	100	0.000	0.000	0.000	
1 017	_	_	100	0.000	0.000	0.000	
10 000	As Zonod	Default	100	0.000	0.000	0.000	
10.000	AS Zoneu	Delault	100	0.030	0.030	0.050	
		Building	100	0.020	0.020	0.050	
10 001		Road	100	0.018	0.018	0.068	
10.001	As Zoned	Default	100	0.020	0.020	0.020	
		Building	100	0.034	0.034	0.054	
		Road	100	0.017	0.017	0.071	
		Parking	70	0.013	0.009	0.080	
11.000	As Zoned	Default	100	0.063	0.063	0.063	
		Building	100	0.094	0.094	0.157	
		Road	100	0.013	0.013	0.170	
		Hardstanding	100	0.020	0.020	0.190	
		Parking	70	0.020	0.014	0.204	
12.000	As Zoned	Default	100	0.048	0.048	0.048	
		Building	100	0.078	0.078	0.126	
		Road	100	0.017	0.017	0.143	
		Hardstanding	100	0 015	0 015	0 158	
		Parking	70	0.006	0 004	0 163	
13 000	As Zonod	Pood	100	0.000	0.004	0.103	
13.000	AS Zoneu	Darking	100	0.021	0.021	0.021	
		Parking	100	0.011	0.007	0.028	
	As Zoned	Default	100	0.026	0.026	0.054	
		Building	100	0.038	0.038	0.092	
		Hardstanding	100	0.022	0.022	0.114	
12.001	-	-	100	0.000	0.000	0.000	
12.002	As Zoned	Default	100	0.029	0.029	0.029	
		Road	100	0.040	0.040	0.069	
		Hardstanding	100	0.003	0.003	0.072	
		Parking	70	0.024	0.017	0.089	
11.001	As Zoned	Default	100	0.023	0.023	0.023	
		Building	100	0.008	0.008	0.031	
		Road	100	0.008	0.008	0.039	
		Hardstanding	100	0.032	0.032	0.071	
		Parking	70	0.000	0.000	0.071	
11.002	As Zoned	Building	100	0.020	0.020	0.020	
		Road	100	0.010	0.010	0.030	
		Hardstanding	100	0.112	0.112	0.142	
		Parking	70	0,009	0.006	0.117	
10.002	As Zoned	Default	100	0.021	0.021	0.021	
20.002	10meu	Building	100	0 013	0 013	0 034	
		Darraring	100	0.015	0.015	0.034	
		Ubun Hardetandiaa	100	0.013	0.013	0.049	
		narustanuing	100	0.000	0.000	0.049	
10 000		rarking	100	0.015	0.011	0.060	
10.003	-	-	100	0.000	0.000	0.000	
14.000	As Zoned	Default	100	0.019	0.019	0.019	
		Road	100	0.000	0.000	0.019	
		Parking	70	0.007	0.005	0.025	
	As Zoned	Default	100	0.034	0.034	0.058	
		Building	100	0.031	0.031	0.089	
		Hardstanding	100	0.010	0.010	0.099	
		Parking	70	0.000	0.000	0.099	
14.001	-		100	0,000	0,000	0.000	
10 004	As Zoned	Defaul+	100	0 010	0 010	0 010	
10.004	TO TOULED	Deraurt	T 0 0	0.010	0.010	0.010	

Area Summary for Surface Water1

©1982-2020 Innovyze
O'Connor Sutton Cronin		Page 10
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamaye
XP Solutions	Network 2020.1.3	1

Area Summary for Surface Water1

Pij	pe	PIMP	PIMP	PIMP Gross		Imp.	Pipe Total	
Numl	ber	Туре	Name	(%)	Area (ha)	Area (ha)	(ha)	
			Road	100	0.019	0.019	0.029	
			Parking	70	0.007	0.005	0.033	
10.0	005	-	-	100	0.000	0.000	0.000	
15.0	000 As	s Zoned	Default	100	0.021	0.021	0.021	
			Building	100	0.044	0.044	0.066	
			Road	100	0.032	0.032	0.098	
			Parking	70	0.015	0.010	0.108	
15.0	JOI As	3 Zoned	Default	100	0.013	0.013	0.013	
			Building	100	0.027	0.027	0.040	
			Road	20	0.014	0.014	0.054	
15 (102	_	I dI KING	100	0.005	0.005	0.000	
16 (גסכ 100 מ	7 7 oned	Default	100	0.000	0.000	0.000	
10.0	500 11	Jonea	Building	100	0.095	0.095	0.184	
			Road	100	0.033	0.033	0.217	
			Parking	70	0.038	0.027	0.245	
16.0	001 As	3 Zoned	Default	100	0.014	0.014	0.014	
			Building	100	0.020	0.020	0.035	
			Road	100	0.013	0.013	0.047	
			Parking	70	0.008	0.006	0.053	
16.0	002 As	S Zoned	Default	100	0.015	0.015	0.015	
			Building	100	0.041	0.041	0.056	
			Road	100	0.010	0.010	0.066	
			Parking	70	0.015	0.010	0.076	
16.0	203	-	-	100	0.000	0.000	0.000	
15.0	003 As	3 Zoned	Default	100	0.013	0.013	0.013	
			Building	100	0.014	0.014	0.026	
			Road	100	0.007	0.007	0.033	
			Parking	70	0.005	0.003	0.036	
15.0	004 As	s Zoned	Default	100	0.016	0.016	0.016	
			Building	100	0.027	0.027	0.043	
			Road	100	0.033	0.033	0.076	
17 /		Zanad	Parking	100	0.005	0.003	0.080	
1/.0	JUU A:	s zonea	Puilding	100	0.017	0.017	0.017	
			Poad	100	0.020	0.020	0.057	
			Parking	70	0.010	0.017	0.054	
15.0	005 As	s Zoned	Default	100	0.012	0.012	0.012	
101		Lonoa	Building	100	0.020	0.020	0.033	
			Road	100	0.013	0.013	0.046	
			Parking	70	0.010	0.007	0.053	
15.0	006	-	-	100	0.000	0.000	0.000	
15.0	07	-	-	100	0.000	0.000	0.000	
15.0	800	-	-	100	0.000	0.000	0.000	
15.0	009 As	s Zoned	Default	100	0.028	0.028	0.028	
			Building	100	0.065	0.065	0.093	
			Road	100	0.025	0.025	0.118	
			Parking	70	0.021	0.014	0.133	
15.0	010 As	s Zoned	Road	100	0.005	0.005	0.005	
18.0	000 As	s Zoned	Default	100	0.057	0.057	0.057	
			Building	100	0.047	0.047	0.103	
			Road	100	0.041	0.041	0.145	
			Parking	70	0.028	0.020	0.164	
18.0	JUI As	s Zoned	Default	100	0.007	0.007	0.007	
10	200		Road	100	0.017	0.017	0.024	
10.0	JUZ 7	-	-	100	0.000	0.000	0.000	
T8.(JUJ AS	szoned	Derault	100	0.034	0.034	0.034	
			Building	100	0.054	0.054	U.U88 0 100	
			Road	100 101	0.036	0.036	0.123	
10 /	104	_	rarking	100	0.021	0.012	0.139	
10.0)05	-	-	100	0.000	0.000	0.000	
TO . (_	_	100	0.000	0.000	0.000	

9 Prussia Street MOYGADDY CASTLE SHD Dublin 7 Ireland Date 19/08/2022 Designed by EH File Checked by MK	O'Connor Sutton Cronin		Page 11
Dublin 7 Ireland Date 19/08/2022 File Checked by MK	9 Prussia Street	MOYGADDY CASTLE SHD	
IrelandMicroDate 19/08/2022Designed by EHFileChecked by MK	Dublin 7		
Date 19/08/2022 Designed by EH File Checked by MK	Ireland		Micco
File Checked by MK Didild	Date 19/08/2022	Designed by EH	Dcainago
	File	Checked by MK	Diamage
XP Solutions Network 2020.1.3	XP Solutions	Network 2020.1.3	1

Pipe	PI	MP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	ту	pe	Name	(%)	Area (ha)	Area (ha)	(ha)
15.011	As Z	oned	Default	100	0.077	0.077	0.077
			Building	100	0.054	0.054	0.131
			Road	100	0.038	0.038	0.169
			Parking	70	0.035	0.025	0.194
15.012		-	_	100	0.000	0.000	0.000
10.006		-	-	100	0.000	0.000	0.000
10.007		-	-	100	0.000	0.000	0.000
10.008		-	-	100	0.000	0.000	0.000
10.009		-	-	100	0.000	0.000	0.000
10.010		-	-	100	0.000	0.000	0.000
10.011		-	-	100	0.000	0.000	0.000
19.000	As Z	oned	Default	100	0.029	0.029	0.029
			Building	100	0.029	0.029	0.058
			Road	100	0.051	0.051	0.109
20.000	As Z	oned	Road	100	0.163	0.163	0.082
20.001	As Z	oned	Default	100	0.012	0.012	0.012
			Road	100	0.138	0.138	0.150
			Parking	70	0.007	0.005	0.156
20.002	As Z	oned	Default	100	0.007	0.007	0.007
			Road	100	0.020	0.020	0.028
20.003	As Z	oned	Default	100	0.010	0.010	0.010
			Road	100	0.039	0.039	0.049
21.000	As Z	oned	Default	100	0.018	0.018	0.018
			Road	100	0.034	0.034	0.052
			Parking	70	0.000	0.000	0.052
	As Z	oned	Road	100	0.000	0.000	0.052
			Parking	70	0.015	0.011	0.063
21.001		User	-	100	0.022	0.022	0.022
	As Z	oned	Parking	70	0.016	0.011	0.034
21.002	As Z	oned	Default	100	0.008	0.008	0.008
			Road	100	0.041	0.041	0.050
	As Z	oned	Building	100	0.167	0.167	0.083
20.004	As Z	oned	Default	100	0.023	0.023	0.023
			Road	100	0.041	0.041	0.064
			Parking	70	0.020	0.014	0.078
19.001		-	-	100	0.000	0.000	0.000
19.002		-	-	100	0.000	0.000	0.000
19.003		-	-	100	0.000	0.000	0.000
19.004		-	-	100	0.000	0.000	0.000
19.005		-	-	TUU	0.000	0.000	0.000
					rotal	rotal	TOTAL
					0.301	0.110	0.110

Area Summary for Surface Water1

Free Flowing Outfall Details for Surface Water1

Outfall Pipe Numbe:	Outfall C r Name	C. Level I (m)	. Level (m) I	Min I. Level (m)	D,L (mm) (W mm)
SC-1.01	7 SC-	53.244	50.797	47.150	0	0
Free Flor	wing Outfo	all Deta	ils for	Surface	Wate	er1
Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level (m)	(mm)	(mm)
SC-10.011	SC-OUTFALL	51.098	48.518	47.700	0	0

O'Connor Sutton Cronin		Page 12
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	1

Free Flowing Outfall Details for Surface Water1

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
SC-19.005	SC-	53.000	52.553	49.110	0	0

O'Connor Sutton	Croni	In						I	age 13	
9 Prussia Street	:			MOYGADD	Y CASTLE	SHD				
Dublin 7									-	
Ireland									Micco	-
Date 19/08/2022				Designe	d by EH				Designed	11111
File				Checked	by MK				Urainac	6
XP Solutions				Network	2020 1 3	3				
				Neework	2020.1.5	, 				
			Online Co	ntrols fo	or Surfac	o Watorl				
					JI JUIIUC	<u>e waterr</u>				
Hydro	Brak	e® Optimum	Manhole	SC-MH-5	7. DS/PN:	SC-1.014	. Volume	$(m^3): 16$	5.9	
<u></u>	Drun	ee operman	<u>Inanno 10</u>		., 20,11.	00 1.011	, vorune	(<u>···</u>	
			U	nit Referen	nce MD-SHE-	-0174-1600-	1400-1600			
			De	sign Head	(m)		1.400			
			Desi	gn Flow (l,	/s)		16.0			
				Flush-Fl	Lo™	. C	alculated			
				Object	lve Minimi	ise upstrea	m storage			
			S	ump Availab	ble		Yes			
				Diameter (r	nm)		174			
			Inv	ert Level	(m)		51.265			
		Minimum Ou	tlet Pipe	Diameter (r	nm)		225			
		Suggeste	ed Manhole	Diameter (r	nm)		1500			
Co	ntrol	Points	Head (m) 1	Flow (l/s)	Conti	rol Points	Head	(m) Flow	(l/s)	
Design H	Point	(Calculated)	1.400	16.0		Kick-	-Flo® 0.	911	13.1	
		Flush-Flo™	0.416	16.0	Mean Flow	over Head F	Range	-	13.8	
	_									
The hydrological	calcu	lations have	been based	d on the He	ad/Dischar	ge relation	ship for th	ne Hydro-B	rake® Optim	um as
storage routing	calcul	ther type of ations will l	control de	ated	спап а нус	dro-Brake U	primume pe	utilised	then these	
beelage roating	curcur	actono witi i		iccu						
Depth (m) Flow	(l/s)	Depth (m) F	low (1/s)	Depth (m) 1	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	i -
0.100	6.2	0.800	14.6	2.000	19.0	4.000	26.4	7.000) 34.6	5
0.200	14.7	1.000	13.6	2.200	19.8	4.500	28.0	7.500) 35.8	3
0.300	15.7	1.200	14.9	2.400	20.7	5.000	29.4	8.000) 36.9)
0.400	16.0	1.400	16.0	2.600	21.5	5.500	30.8	8.500	38.0)
0.500	15.9	1.600	17.0	3.000	23.0	6.000	32.1	9.000) 39.1	L 1
0.000	13.7	1.000	10.0	5.500	24.0	0.500	55.4	9.300	, 40.1	-
Hydro	-Brak	e® Optimum	Manhole	SC-MH-8	9, DS/PN:	SC-15.00	8, Volume	e (m³): 3	3.7	
			U _	nit Referen	nce MD-SHE-	-0194-2000-	1350-2000			
			De	sign Head	(m) (s)		20 0			
			Dest	Flush-F	Lo™	C	alculated			
				Object	ive Minimi	ise upstrea	m storage			

Surface	Application
Yes	Sump Available
194	Diameter (mm)
53.675	Invert Level (m)
225	Minimum Outlet Pipe Diameter (mm)
1500	Suggested Manhole Diameter (mm)

Control Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.350	20.0	Kick-Flo®	0.907	16.6
Flush-Flo™	0.414	20.0	Mean Flow over Head Range	-	17.2

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (l/s)								
0.100	6.7	0.800	18.3	2.000	24.1	4.000	33.6	7.000	44.1
0.200	18.0	1.000	17.3	2.200	25.2	4.500	35.6	7.500	45.6
0.300	19.7	1.200	18.9	2.400	26.3	5.000	37.5	8.000	47.0
0.400	20.0	1.400	20.3	2.600	27.4	5.500	39.2	8.500	48.4
0.500	19.9	1.600	21.7	3.000	29.3	6.000	40.9	9.000	49.8
0.600	19.6	1.800	22.9	3.500	31.6	6.500	42.5	9.500	51.1

O'Connor Sutton Cronin		Page 14
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: SC-MH-104, DS/PN: SC-10.010, Volume (m³): 2.7

Unit Reference	MD-SHE-0213-2410-1200-2410
Design Head (m)	1.200
Design Flow (l/s)	24.1
Flush-Flo™	Calculated
Objective	Minimise upstream storage
Application	Surface
Sump Available	Yes
Diameter (mm)	213
Invert Level (m)	48.784
Minimum Outlet Pipe Diameter (mm)	225
Suggested Manhole Diameter (mm)	1500

Control	Points	Head (m)	Flow (l/s)	Control Points	Head (m)	Flow (l/s)
Design Point	(Calculated)	1.200	24.1	Kick-Flo®	0.845	20.4
	Flush-Flo™	0.390	24.1	Mean Flow over Head Range	-	20.5

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow $(1/s)$	Depth (m)	Flow (l/s)						
0.100	7.2	2 0.800	21.4	2.000	30.8	4.000	43.0	7.000	56.3
0.200	20.	1.000	22.1	2.200	32.2	4.500	45.5	7.500	58.3
0.300	23.8	1.200	24.1	2.400	33.6	5.000	47.9	8.000	60.1
0.400	24.3	1.400	25.9	2.600	34.9	5.500	50.1	8.500	61.9
0.500	23.	1.600	27.6	3.000	37.4	6.000	52.3	9.000	63.7
0.600	23.4	1.800	29.3	3.500	40.3	6.500	54.3	9.500	65.4

Hydro-Brake® Optimum Manhole: SC-MH-119, DS/PN: SC-19.005, Volume (m³): 4.6

Unit Reference	MD-SHE-0078-3700-2000-3700			
Design Head (m)	2.000			
Design Flow (1/s)	3./			
Flush-Flo™	Calculated			
Objective	Minimise upstream storage			
Application	Surface			
Sump Available	Yes			
Diameter (mm)	78			
Invert Level (m)	52.594			
Minimum Outlet Pipe Diameter (mm)	100			
Suggested Manhole Diameter (mm)	1200			
Control Points Head (m) Flow (1/s)	Control Points Head	(m)	Flow	(l/s)

Design Point	(Calculated)	2.000	3.7		Kick-Flo@	0.701	2.3
	Flush-Flo™	0.347	2.8	Mean Flow	over Head Range	· –	2.8

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (]	l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)	Depth	(m)	Flow	(l/s)
0 100		2 2	0	800		24	2	000		37	4	000		51	7	000		6 6
0.200		2.7	1.	.000		2.7	2.	.200		3.9	4.	500		5.4	7.	500		6.9
0.300		2.8	1.	.200		2.9	2.	400		4.0	5.	000		5.7	8.	000		7.1
0.400		2.8	1.	.400		3.1	2.	.600		4.2	5.	500		5.9	8.	500		7.3
0.500		2.8	1.	.600		3.3	3.	.000		4.5	6.	000		6.2	9.	000		7.5
0.600		2.6	1.	.800		3.5	3.	.500		4.8	6.	500		6.4	9.	500		7.7

O'Connor Sut	tton Cron	in												Pa	ge 1	5
9 Prussia St	treet				I	MOYGA	DDY CA	ASTLE S	HD							
Dublin 7															1	
Ireland															Micc	
Date 19/08/2	2022				1	Desig	ned by	y EH							Dcai	
File					(Check	ed by	MK							ווסוט	laye
XP Solutions	S]	Netwo	rk 202	20.1.3						I		
			Stor	rage S	tru	cture	s for	Surfac	o Wa	tor1						
			500	Laye 5	LIU	ccure	5 101	Sullac	e wa	LEII	-					
		Cellula	ar St	torage	Ma	nhole	: SC-	MH-57,	DS/P	N: 5	SC-1.	014				
		Infiltrat Infiltrat	ion (ion (Coeffic Coeffic	Inve ient ient	rt Lev Base Side	rel (m) (m/hr) (m/hr)	51.265 0.00000 0.00000	Safe	ty F Por	actor osity	2.0 0.60				
Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²) I	nf. Area	(m²)	Dep	th (m)	Area	(m²)	Inf.	Area	(m²)
0.000	2525.0		0.0	1.	200	25	25.0		0.0		1.201		0.0			0.0
		Cellula	r St	orage	Mar	nhole	: SC-M	1H-89, 1	DS/PN	1: S	C-15.	008				
				:	Inve	rt Lev	rel (m)	53.675	Safe	ty F	actor	2.0				
		Infiltrat Infiltrat	ion (ion (Coeffic	ient ient	Base Side	(m/hr) (m/hr)	0.00000		Por	osity	0.60				
Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²) I	nf. Area	(m²)	Dep	th (m)	Area	(m²)	Inf.	Area	(m²)
0.000	250.0		0.0	1.	200	2	50.0		0.0		1.201		0.0			0.0
	Cellular Storage Manhole: SC-MH-104, DS/PN: SC-10.010															
		- C'1.			Inve	rt Lev	rel (m)	48.784	Safe	ty F	actor	2.0				
		Infiltrat	ion (Coeffic	ient	Base Side	(m/hr) (m/hr)	0.00000		Por	osity	0.60				
Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²) I	nf. Area	(m²)	Dep	th (m)	Area	(m²)	Inf.	Area	(m²)
0.000	1650.0		0.0	1.	200	16	50.0		0.0		1.201		0.0			0.0
		Cellula	r Sto	orage	Man	hole:	SC-M	H-106,	DS/P	N: 5	SC-19	.000				
		Infiltrat	ion (Coeffici	Inve ient	rt Lev Base	rel (m) (m/hr)	53.886 0.00000	Safe	ty F Por	actor osity	2.0 0.95				
		Infiltrat	ion (Coeffic	ient	Side	(m/hr)	0.00000			-					
Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²) I	nf. Area	(m²)	Dep	th (m)	Area	(m²)	Inf.	Area	(m²)
0.000	350.0		0.0	1.	200	3	50.0		0.0		1.201		0.0			0.0
		Infiltrat	ion	Trench	n Ma	anhol	e: SC-	-MH-119	, DS/	'PN:	SC-1	9.005)			
	Infilt	ration Coe	ffici	lent Bas	se (m/hr)	0.0000	0	Т	renc	h Widt	:h (m)	0.0	5		
	Infilt	ration Coe	ffici	lent Sid Safet	de (-vF	m/hr) actor	0.0000	0	Tr	ench	Lengt Slope	h (m)	136.0)		
				Durce	Por	osity	0.3	0	Cap V	olum	e Dept	(1.77) h (m)	0.000)		
			I	Invert 1	Leve	l (m)	52.59	4 Cap Ir	nfiltr	atio	n Dept	:h (m)	0.000)		

O'Connor Sutton Cronin		Page 16										
9 Prussia Street	MOYGADDY CASTLE SHD											
Dublin 7												
Ireland		Micro										
Date 19/08/2022	Designed by EH	Dcainago										
File	Checked by MK	Diamage										
XP Solutions	Network 2020.1.3	•										
Summary of Critical Results k Areal Reduction Factor Hot Start (mins)	Dy Maximum Level (Rank 1) for Surface Wa Simulation Criteria 1.000 Additional Flow - % of Total Flow 0.0	ater1 00										
Hot Start Level (mm)	0 Inlet Coefficient 0.8	00										
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000												
Foul Sewage per hectare (l/s) 0.000												
Number of Input Hydrographs 0 Number Number of Online Controls 4 Number Synt Bainfall Model	er of Offline Controls 0 Number of Time/Area Di of Storage Structures 5 Number of Real Time Co <u>hetic Rainfall Details</u> FSR M5-60 (mm) 15,700 Cv (Summer) 0,750	agrams 0 ntrols 0										
Region Scotland and	l Ireland Ratio R 0.278 Cv (Winter) 0.840											
Margin for Flood Risk Wa Analysi Iner	rning (mm) 300.0 s Timestep 2.5 Second Increment (Extended) DTS Status ON DVD Status OFF tia Status OFF											
Profile(s)	Summer and Wir	iter										
Duration(s) (mins) 1	5, 30, 60, 120, 180, 240, 360, 480, 600, 720, 9 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10	960, 1080										
Return Period(s) (years)	1110, 2100, 2000, 1920, 9700, 7200, 9010, 10	100										
Climate Change (%)		20										
Climate Change (%)		20										
Climate Change (%)	Water Surcharged Pipe	20										
Climate Change (%) US/MH	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap (1/2)	20										
Climate Change (%) US/MH PN Name Event	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s	20 s y) Status										
Climate Change (%) US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wint	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37.	20 Status 6 OK										
Climate Change (%) US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wint SC-1.001 SC-MH-2 15 minute 100 year Wint SC-1.002 SC-MH-3 15 minute 100 year Wint	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58.	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED										
Climate Change (%) US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wint SC-1.001 SC-MH-2 15 minute 100 year Wint SC-1.002 SC-MH-3 15 minute 100 year Wint SC-1.003 SC-MH-4 15 minute 100 year Wint	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68.	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED										
Climate Change (%) US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-5 15 minute 100 year Wind	Water Surcharged Pipe US/CL Level Depth Flow / Flow / Flow / (m) (m) (m) (m) Cap. (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.191 55.991 0.000 0.53 19.	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED 8 SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute 100 year WindSC-1.001SC-MH-215 minute 100 year WindSC-1.002SC-MH-315 minute 100 year WindSC-1.003SC-MH-415 minute 100 year WindSC-2.000SC-MH-515 minute 100 year WindSC-2.001SC-MH-615 minute 100 year WindSC-2.002SC-MH-615 minute 100 year WindSC-2.003SC-MH-715 minute 100 year Wind	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.966 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.496 55.961 0.157 0.58 20. ter I+20% 57.496 55.961 0.157 0.58 20.	20 Status Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED										
Climate Change (%)US/MHUS/MHPNNameEventSC-1.000SC-MH-115 minute100 year WindSC-1.001SC-MH-215 minute100 year WindSC-1.002SC-MH-315 minute100 year WindSC-1.003SC-MH-415 minute100 year WindSC-2.000SC-MH-515 minute100 year WindSC-2.001SC-MH-615 minute100 year WindSC-2.002SC-MH-715 minute100 year WindSC-2.003SC-MH-815 minute100 year Wind	Water Surcharged Pipe US/CL Level Depth Flow / Flow (m) (m) (m) Cap. (1/s) ter I+20% 56.961 55.660 -0.101 0.566 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.191 55.991 0.000 0.53 19. ter I+20% 57.496 55.960 0.157 0.58 20. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.399 55.757 0.311 0.86 40.	20 Status Status Constants Surcharged Surcharged Surcharged Surcharged Surcharged Surcharged Surcharged Surcharged										
Climate Change (%)US/MHUS/MHPNNameEventSC-1.000SC-MH-115 minute100 year WintSC-1.001SC-MH-215 minute100 year WintSC-1.002SC-MH-315 minute100 year WintSC-1.003SC-MH-415 minute100 year WintSC-2.000SC-MH-515 minute100 year WintSC-2.001SC-MH-615 minute100 year WintSC-2.002SC-MH-615 minute100 year WintSC-2.003SC-MH-815 minute100 year WintSC-2.004SC-MH-915 minute100 year Wint	Water Surcharged Pipe US/CL (m) Level Depth (m) Flow / Flow (l/s ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.624 55.931 0.218 1.01 38. ter 1+20% 57.399 55.757 0.311 0.86 40. ter 1+20% 57.516 55.628 0.381 1.00 53.	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 2 SURCHARGED 0 SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WindSC-1.001SC-MH-215 minute100 year WindSC-1.002SC-MH-315 minute100 year WindSC-1.003SC-MH-415 minute100 year WindSC-2.000SC-MH-415 minute100 year WindSC-2.001SC-MH-615 minute100 year WindSC-2.002SC-MH-615 minute100 year WindSC-2.003SC-MH-815 minute100 year WindSC-2.004SC-MH-915 minute100 year WindSC-1.004SC-MH-1015 minute100 year Wind	Water Surcharged Pipe US/CL (m) Level Depth (m) Flow / (m) Flow / (l/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 57.542 55.322 0.333 0.87 58. ter I+20% 57.196 55.991 0.000 0.53 19. ter I+20% 57.496 55.960 0.157 0.58 20. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.610 55.100 0.394 1.52 122.	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 2 SURCHARGED 0 SURCHARGED 4 SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-1 15 minute 100 year WintSC-1.001SC-MH-2 15 minute 100 year WintSC-1.002SC-MH-3 15 minute 100 year WintSC-1.003SC-MH-4 15 minute 100 year WintSC-2.000SC-MH-5 15 minute 100 year WintSC-2.001SC-MH-6 15 minute 100 year WintSC-2.002SC-MH-7 15 minute 100 year WintSC-2.003SC-MH-8 15 minute 100 year WintSC-2.004SC-MH-9 15 minute 100 year WintSC-1.004SC-MH-10 15 minute 100 year WintSC-1.005SC-MH-11 15 minute 100 year WintSC-1.006SC-MH-12 15 minute 100 year Wint	Water Surcharged Depth Pipe Flow / Cap. US/CL (m) Level (m) Depth (m) Flow / Cap. Flow (l/s ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.944 0.421 1.02 68. ter I+20% 57.191 55.991 0.000 0.53 19. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 57.642 55.014 0.344 1.45 134.	20 Status Status Constants Status Status Status Surcharged										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WintSC-1.001SC-MH-215 minute100 year WintSC-1.002SC-MH-315 minute100 year WintSC-1.003SC-MH-415 minute100 year WintSC-2.000SC-MH-515 minute100 year WintSC-2.001SC-MH-615 minute100 year WintSC-2.002SC-MH-715 minute100 year WintSC-2.003SC-MH-815 minute100 year WintSC-2.004SC-MH-915 minute100 year WintSC-1.004SC-MH-1015 minute100 year WintSC-1.005SC-MH-1115 minute100 year WintSC-1.006SC-MH-1215 minute100 year WintSC-3.000SC-MH-1315 minute100 year Wint	Water Surcharged Depth Pipe Flow US/CL (m) Level (m) Depth (m) Flow Flow (cap. ter 1+20% 56.961 55.660 -0.101 0.566 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.156 55.324 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.426 55.931 0.218 1.01 38. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 57.417 54.890 0.282 1.11 159.	20 Status Status Control Status Surcharged Surcha										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WintSC-1.001SC-MH-215 minute100 year WintSC-1.002SC-MH-315 minute100 year WintSC-1.003SC-MH-415 minute100 year WintSC-2.000SC-MH-415 minute100 year WintSC-2.001SC-MH-615 minute100 year WintSC-2.002SC-MH-715 minute100 year WintSC-2.003SC-MH-815 minute100 year WintSC-2.004SC-MH-915 minute100 year WintSC-1.004SC-MH-1015 minute100 year WintSC-1.005SC-MH-1115 minute100 year WintSC-1.006SC-MH-1215 minute100 year WintSC-3.000SC-MH-1315 minute100 year WintSC-3.001SC-MH-1415 minute100 year Wint	Water Surcharged Depth Flow / Flow / Cap. Pipe Flow / (1/s) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.32 0.333 0.87 58. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.496 55.991 0.000 0.53 19. ter 1+20% 57.624 55.931 0.218 1.01 38. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 57.642 55.014 0.344 1.45 134. ter 1+20% 56.727 55.411 -0.116	20 Status 6 OK 6 SURCHARGED 5 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 3 SURCHARGED 4 SURCHARGED 4 SURCHARGED 5 OK 8 SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WindSC-1.001SC-MH-215 minute100 year WindSC-1.002SC-MH-315 minute100 year WindSC-1.003SC-MH-415 minute100 year WindSC-2.000SC-MH-415 minute100 year WindSC-2.001SC-MH-615 minute100 year WindSC-2.002SC-MH-615 minute100 year WindSC-2.003SC-MH-815 minute100 year WindSC-2.004SC-MH-915 minute100 year WindSC-1.004SC-MH-1015 minute100 year WindSC-1.005SC-MH-1115 minute100 year WindSC-3.000SC-MH-1315 minute100 year WindSC-3.001SC-MH-1415 minute100 year WindSC-1.007SC-MH-1415 minute100 year WindSC-1.007SC-MH-1515 minute100 year Wind	Water Surcharged Depth (m) Pipe Flow / (m) tevel (m) Depth (m) Flow / (m) Flow / (l/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 57.542 55.322 0.333 0.87 58. ter I+20% 57.196 55.991 0.000 0.53 19. ter I+20% 57.624 55.991 0.000 0.53 19. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 57.417 54.890 0.282 1.11 159. ter I+20% 56.727 55.411 -0.116 0.47 32. ter I+20%	20 Status COMPANY Status COMPANY SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-1 15 minute 100 year WindSC-1.001SC-MH-2 15 minute 100 year WindSC-1.002SC-MH-3 15 minute 100 year WindSC-1.003SC-MH-4 15 minute 100 year WindSC-2.000SC-MH-4 15 minute 100 year WindSC-2.001SC-MH-6 15 minute 100 year WindSC-2.002SC-MH-6 15 minute 100 year WindSC-2.003SC-MH-7 15 minute 100 year WindSC-2.004SC-MH-9 15 minute 100 year WindSC-1.004SC-MH-10 15 minute 100 year WindSC-1.005SC-MH-11 15 minute 100 year WindSC-3.000SC-MH-12 15 minute 100 year WindSC-3.001SC-MH-13 15 minute 100 year WindSC-3.001SC-MH-14 15 minute 100 year WindSC-1.007SC-MH-16 15 minute 100 year WindSC-1.008SC-MH-16 15 minute 100 year WindSC-1.008SC-MH-17 15 minute 100 year WindSC-1.008SC-MH-16 15 minute 100 year WindSC-1.008SC-MH-17 15 minute 100 year Wind	Water Surcharged Depth Pipe Flow / Cap. US/CL (m) Level (m) Depth (m) Flow / Cap. Flow (l/s ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.191 55.991 0.000 0.53 19. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 56.727 55.411 -0.116 0.47 32.	20 Status Status Surcharged SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WintSC-1.001SC-MH-215 minute100 year WintSC-1.002SC-MH-315 minute100 year WintSC-1.003SC-MH-415 minute100 year WintSC-2.000SC-MH-415 minute100 year WintSC-2.001SC-MH-615 minute100 year WintSC-2.002SC-MH-715 minute100 year WintSC-2.003SC-MH-815 minute100 year WintSC-2.004SC-MH-915 minute100 year WintSC-1.004SC-MH-1015 minute100 year WintSC-1.005SC-MH-1115 minute100 year WintSC-3.000SC-MH-1315 minute100 year WintSC-3.001SC-MH-1415 minute100 year WintSC-3.001SC-MH-1415 minute100 year WintSC-1.007SC-MH-1515 minute100 year WintSC-1.008SC-MH-1615 minute100 year WintSC-1.009SC-MH-1715 minute100 year WintSC-1.010SC-MH-1815 minute100 year Wint	WaterSurchargedPipeUS/CLLevelDepthFlow /(m)(m)(m)Cap.ter1+20% 56.961 55.660 -0.1010.56 $37.$ ter1+20% 57.542 55.621 0.1470.81 $54.$ ter1+20% 57.542 55.321 0.3330.87 $58.$ ter1+20% 57.156 55.344 0.4211.0268.ter1+20% 57.991 0.000 0.5319.ter1+20% 57.991 0.218 ter1+20% 57.991 0.218 ter1+20% 57.577 0.311 0.8640.ter1+20% 57.516 55.628 0.381 1.00 ter1+20% 57.611 55.100 0.394 1.52 ter1+20% 57.612 55.014 0.344 1.45 ter1+20% 57.611 55.014 0.344 1.45 ter1+20% 56.727 55.411 -0.116 0.477 ter1+20% 56.727 55.012 0.066 0.89 ter1+20% 56.704 54.597 0.145 1.66 ter1+20% 56.746 54.597 0.145 1.66 ter1+20% 56.746 54.450 0.047 1.39 ter1+20% 56.213 54.369 $0.$	20 Status Status SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WintSC-1.001SC-MH-215 minute100 year WintSC-1.002SC-MH-315 minute100 year WintSC-1.003SC-MH-415 minute100 year WintSC-2.000SC-MH-415 minute100 year WintSC-2.001SC-MH-615 minute100 year WintSC-2.002SC-MH-615 minute100 year WintSC-2.003SC-MH-815 minute100 year WintSC-2.004SC-MH-915 minute100 year WintSC-1.004SC-MH-1015 minute100 year WintSC-1.005SC-MH-1115 minute100 year WintSC-3.000SC-MH-1215 minute100 year WintSC-3.001SC-MH-1315 minute100 year WintSC-3.001SC-MH-1415 minute100 year WintSC-1.007SC-MH-1515 minute100 year WintSC-1.008SC-MH-1615 minute100 year WintSC-1.009SC-MH-1715 minute100 year WintSC-1.010SC-MH-1815 minute100 year Wint	Water Surcharged Pipe US/CL (m) Level Depth (m) Flow / Cap. Flow (l/s) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.32 0.333 0.87 58. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.624 55.931 0.218 1.01 38. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter </td <td>20 Status CONTRACTION OF CONTRACTION OF CONTRACTICO OF CONTRACTICO OF CONTRACTICO OF CONTRACTICACTICACTICACTICACTICACTICACTI</td>	20 Status CONTRACTION OF CONTRACTION OF CONTRACTICO OF CONTRACTICO OF CONTRACTICO OF CONTRACTICACTICACTICACTICACTICACTICACTI										
US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.003 SC-MH-8 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-1.004 SC-MH-10 15 minute 100 year Wind SC-1.005 SC-MH-11 15 minute 100 year Wind SC-1.006 SC-MH-12 15 minute 100 year Wind SC-3.000<	Water Surcharged Depth (m) Pion Flow / (m) Pion Flow / (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 57.542 55.322 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.496 55.991 0.000 0.53 19. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 57.417 54.890 0.282 1.11 159. ter I+20% 56.727 55.411 -0.116 0.47	20 Status COMPANY Status Status COMPANY Status SURCHARGED										
US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.003 SC-MH-8 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-1.004 SC-MH-10 15 minute 100 year Wind SC-3.000 SC-MH-11 15 minute 100 year Wind SC-3.000 SC-MH-14 15 minute 100 year Wind SC-3.000<	Water Surcharged Depth Piow Flow / Cap. Piow (1/s) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.966 55.532 0.147 0.81 54. ter I+20% 57.542 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.191 55.991 0.000 0.53 19. ter I+20% 57.496 55.960 0.157 0.58 20. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 57.617 55.411 -0.116 0.47 32. ter I+20% 56.727 55.411 -0.116 0.47	20 Status Status Surcharged SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WindSC-1.001SC-MH-215 minute100 year WindSC-1.002SC-MH-315 minute100 year WindSC-1.003SC-MH-415 minute100 year WindSC-2.000SC-MH-415 minute100 year WindSC-2.001SC-MH-615 minute100 year WindSC-2.002SC-MH-615 minute100 year WindSC-2.003SC-MH-815 minute100 year WindSC-2.004SC-MH-915 minute100 year WindSC-2.005SC-MH-1015 minute100 year WindSC-1.004SC-MH-1015 minute100 year WindSC-1.005SC-MH-1115 minute100 year WindSC-3.000SC-MH-1215 minute100 year WindSC-3.001SC-MH-1415 minute100 year WindSC-3.001SC-MH-1415 minute100 year WindSC-1.008SC-MH-1615 minute100 year WindSC-1.009SC-MH-1715 minute100 year WindSC-1.010SC-MH-1815 minute100 year WindSC-1.010SC-MH-2015 minute100 year WindSC-5.001SC-MH-2115 minute100 year WindSC-5.002SC-MH-2215 minute100 year WindSC-5.003SC-MH-2315 minute100 year Wind	Water Surcharged Depth (m) Pion Flow / (m) Pion Flow / (m) ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.621 0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.191 55.991 0.000 0.53 19. ter I+20% 57.624 55.931 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 56.727 55.411 -0.116 0.47 32. ter I+20% 56.747 54.890 0.282 1.11	20 Status Status Surcharged SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute100 year WindSC-1.001SC-MH-215 minute100 year WindSC-1.002SC-MH-315 minute100 year WindSC-1.003SC-MH-415 minute100 year WindSC-2.000SC-MH-415 minute100 year WindSC-2.001SC-MH-615 minute100 year WindSC-2.002SC-MH-715 minute100 year WindSC-2.003SC-MH-715 minute100 year WindSC-2.004SC-MH-715 minute100 year WindSC-1.004SC-MH-915 minute100 year WindSC-1.005SC-MH-1115 minute100 year WindSC-1.006SC-MH-1215 minute100 year WindSC-3.001SC-MH-1315 minute100 year WindSC-1.008SC-MH-1415 minute100 year WindSC-1.009SC-MH-1715 minute100 year WindSC-1.009SC-MH-1815 minute100 year WindSC-1.010SC-MH-1915 minute100 year WindSC-5.001SC-MH-2015 minute100 year WindSC-5.001SC-MH-2115 minute100 year WindSC-5.003SC-MH-2215 minute100 year WindSC-5.004SC-MH-2415 minute100 year WindSC-5.004SC-MH-2415 minute100 year Wind	Water Surcharged Depth (m) Flow Cap. Pipe Flow (l/s) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.32 0.333 0.87 58. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.496 55.960 0.157 0.58 20. ter 1+20% 57.399 55.757 0.311 0.86 40. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter 1+20% 56.714 54.597 0.145	20 Status OK SURCHARGED										
US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.003 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.003 SC-MH-7 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-1.004 SC-MH-10 15 minute 100 year Wind SC-1.004 SC-MH-12 15 minute 100 year Wind SC-1.006 SC-MH-13 15 minute 100 year Wind SC-1.008 SC	Water Surcharged Depth (m) Flow Cap. Pipe Flow (l/s ter I+20% 56.961 55.660 -0.101 0.56 37. ter I+20% 56.961 55.660 -0.147 0.81 54. ter I+20% 56.966 55.532 0.333 0.87 58. ter I+20% 57.156 55.344 0.421 1.02 68. ter I+20% 57.624 55.991 0.000 0.53 19. ter I+20% 57.624 55.91 0.218 1.01 38. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.516 55.628 0.381 1.00 53. ter I+20% 57.611 55.100 0.394 1.52 122. ter I+20% 57.417 54.890 0.282 1.11 159. ter I+20% 56.727 55.411 -0.116 0.47 32. ter I+20% 56.745 54.450 0.047 1.39	20 Status Status SURCHARGED										
US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.003 SC-MH-8 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-1.004 SC-MH-10 15 minute 100 year Wind SC-1.005 SC-MH-11 15 minute 100 year Wind SC-1.006 SC-MH-12 15 minute 100 year Wind SC-1.007<	Water US/CL (m) Surcharged Level (m) Pipe Depth (m) Flow / Flow / (m) Pipe Flow / Flow (m) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 56.961 55.6621 0.147 0.81 54. ter 1+20% 56.966 55.532 0.333 0.87 58. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.156 55.991 0.000 0.53 19. ter 1+20% 57.496 55.960 0.157 0.58 20. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter 1+20% 56.740 <td>20 Status COMPANY Status Status SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED USURCHARGED SURCHARGED</td>	20 Status COMPANY Status Status SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED SURCHARGED USURCHARGED SURCHARGED										
US/MH Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.003 SC-MH-8 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-2.003 SC-MH-10 15 minute 100 year Wind SC-1.004 SC-MH-10 15 minute 100 year Wind SC-1.006 SC-MH-11 15 minute 100 year Wind SC-1.007 SC-MH-12	Water US/CL (m) Surcharged Level (m) Flow Depth (m) Flow Flow (m) Pipe Flow Flow (m) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.321 0.333 0.87 58. ter 1+20% 57.156 55.944 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.191 55.901 0.1157 0.58 20. ter 1+20% 57.191 55.910 0.1157 0.58 20. ter 1+20% 57.191 55.101 0.1167 0.58 20. ter 1+20% 57.516 55.628 0.381 1.00 53. ter 1+20% 57.611 55.101 0.394 1.52 122. ter 1+20% 56.727	20 Status Status Surcharged SURCHARGED										
US/MH PN Name Event SC-1.000 SC-MH-1 15 minute 100 year Wind SC-1.001 SC-MH-2 15 minute 100 year Wind SC-1.002 SC-MH-3 15 minute 100 year Wind SC-1.003 SC-MH-4 15 minute 100 year Wind SC-2.000 SC-MH-4 15 minute 100 year Wind SC-2.001 SC-MH-6 15 minute 100 year Wind SC-2.002 SC-MH-7 15 minute 100 year Wind SC-2.004 SC-MH-9 15 minute 100 year Wind SC-2.004 SC-MH-10 15 minute 100 year Wind SC-1.004 SC-MH-11 15 minute 100 year Wind SC-3.000 SC-MH-13 15 minute 100 year Wind SC-1.006 SC-MH-14 15 minute 100 year Wind SC-1.008 SC-MH-17 15 minute 100 year Wind SC-1.00	Water US/CL (m) Surcharged Level (m) Depth Depth (m) Flow Flow (m) Pipe Flow (l/s) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.191 55.991 0.000 0.53 19. ter 1+20% 57.624 55.931 0.218 1.01 38. ter 1+20% 57.616 55.628 0.381 1.00 53. ter 1+20% 57.611 55.100 0.394 1.52 122. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter 1+20% 56.704 54.597 0.145 1.66 214. ter 1+20% 56.476	20 Status SURCHARGED										
Climate Change (%)US/MHPNNameEventSC-1.000SC-MH-115 minute 100 year WindSC-1.001SC-MH-215 minute 100 year WindSC-1.002SC-MH-315 minute 100 year WindSC-1.003SC-MH-415 minute 100 year WindSC-2.000SC-MH-415 minute 100 year WindSC-2.001SC-MH-615 minute 100 year WindSC-2.002SC-MH-715 minute 100 year WindSC-2.003SC-MH-815 minute 100 year WindSC-2.004SC-MH-915 minute 100 year WindSC-2.004SC-MH-915 minute 100 year WindSC-1.004SC-MH-915 minute 100 year WindSC-1.005SC-MH-1115 minute 100 year WindSC-1.006SC-MH-1215 minute 100 year WindSC-3.000SC-MH-1315 minute 100 year WindSC-1.006SC-MH-1415 minute 100 year WindSC-1.007SC-MH-1515 minute 100 year WindSC-1.008SC-MH-1615 minute 100 year WindSC-1.009SC-MH-1715 minute 100 year WindSC-5.000SC-MH-2015 minute 100 year WindSC-5.001SC-MH-2115 minute 100 year WindSC-5.003SC-MH-2215 minute 100 year WindSC-5.004SC-MH-2415 minute 100 year WindSC-5.005SC-MH-2415 minute 100 year WindSC-5.004SC-MH-2415 minute 100 year WindSC-5.005SC-MH-2415 minute 100 year WindSC-5.006SC-MH-2715 minute 100 year Wind	Water US/CL (m) Surcharged Level (m) Depth Depth (m) Flow Flow (m) Pipe Flow (m) ter 1+20% 56.961 55.660 -0.101 0.56 37. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.542 55.621 0.147 0.81 54. ter 1+20% 57.156 55.344 0.421 1.02 68. ter 1+20% 57.496 55.960 0.157 0.58 20. ter 1+20% 57.624 55.931 0.218 1.01 38. ter 1+20% 57.642 55.010 0.394 1.52 122. ter 1+20% 57.642 55.014 0.344 1.445 134. ter 1+20% 56.727 55.411 -0.116 0.47 32. ter 1+20% 56.704 54.597 0.145 1.66 214. ter 1+20% 56.707	20 Status Status SURCHARGED										

©1982-2020 Innovyze

O'Connor Sutton Cronin								
9 Prussia Street	MOYGADDY CASTLE SHD							
Dublin 7								
Ireland		Micro						
Date 19/08/2022	Designed by EH	Dcainago						
File	Checked by MK	Diginarie						
XP Solutions	Network 2020.1.3							

Summary of Critical Results by Maximum Level (Rank 1) for Surface Water1

									Water	Surcharged		Pipe	
	US/MH							US/CL	Level	Depth	Flow /	Flow	
PN	Name			E	vent			(m)	(m)	(m)	Cap.	(1/s)	Status
								(/	、/	\ /		(_/ -/	
SC-7.002	SC-MH-33	15	minute	100	vear	Winter	I+20%	56.814	56.331	0.717	1.27	85.6	SURCHARGED
SC-8.000	SC-MH-34	15	minute	100	vear	Winter	I+20%	56.600	56.097	0.697	0.62	20.4	SURCHARGED
SC-8.001	SC-MH-35	15	minute	100	year	Winter	I+20%	56.546	56.075	0.729	0.61	21.3	SURCHARGED
SC-8.002	SC-MH-36	15	minute	100	vear	Winter	I+20%	56.478	56.049	0.771	1.95	68.4	SURCHARGED
SC-8.003	SC-MH-37	15	minute	100	vear	Winter	I+20%	56.409	55.791	0.582	1.61	65.9	SURCHARGED
SC-8,004	SC-MH-38	15	minute	100	vear	Winter	I+20%	56,209	55.278	0.269	1.14	65.6	SURCHARGED
SC-7.003	SC-MH-39	15	minute	100	vear	Winter	I+20%	56.236	55.033	0.216	1.87	170.2	SURCHARGED
SC-7.004	SC-MH-40	15	minute	100	vear	Winter	I+20%	56.031	54.844	0.081	0.94	177.7	SURCHARGED
SC-4 002	SC-MH-41	15	minute	100	vear	Winter	T+20%	55 475	54 409	0 135	1 46	354 6	SURCHARGED
SC-4 003	SC-MH-42	15	minute	100	vear	Winter	T+20%	55 416	53 921	-0 295	0 40	355 5	OK
SC-4 004	SC-MH-43	30	minute	100	vear	Winter	T+20%	53 410	52 927	0.233	2 03	347 1	SURCHARGED
SC-4 005	SC-MH-44	30	minute	100	vear	Winter	T+20%	55 819	52 827	0.651	1 90	350 9	SURCHARGED
SC-4.006	SC-MH-45	30	minute	100	vear	Winter	T+20%	55 859	52 705	0.565	2 11	354 1	SURCHARGED
SC-1 011	SC-MH-46	30	minuto	100	year	Winter	T+208	56 064	52 588	0.000	3 23	582 8	SUPCHARCED
SC-1.011	SC-MH-40	15	minute	100	year	Winter	1+20% T+20%	55 3/9	54 052	-0 097	0.62	12 0	OKCHARGED
SC-9.000	SC-MH-47	15	minute	100	year	Summor	1+20% T+20%	55 303	53 010	-0.097	0.02	42.0	OK
SC-9.001	SC-MH-40	15	minute	100	year	Summor	1+20% T+20%	55 271	53 555	-0.093	0.00	42.1	OK
SC-9.002	SC-MH-49	15	minute	100	year	Juniner	17200	55.Z/I	53.000	-0.087	0.00	42.2	OK
SC-9.003	SC-MH-50	15	minute	100	year	Winter	1+203	55.313 EE 400	53.330 E2 1E4	-0.089	0.67	41.9	OK
SC-9.004	SC-MH-51	15	minute	100	year	winter	1+203	55.409	53.154	-0.097	0.61	41.0	OK
SC-9.005	SC-MH-52	15	minute	100	year	Summer	1+208	55.563	52.911	-0.101	0.58	42.1	OK
SC-9.006	SC-MH-53	20	minute	100	year	Summer	1+208	55.720	52.637	-0.100	0.59	42.3	UK
SC-9.007	SC-MH-54	30	minute	100	year	Winter	1+20%	55.980	52.468	0.094	0.79	56.2	SURCHARGED
SC-1.012	SC-MH-55	30	minute	100	year	Winter	1+20%	56.082	52.375	0.273	1.50	622.1	SURCHARGED
SC-1.013	SC-MH-56	960	minute	100	year	Winter	1+20%	53.245	52.250	0.205	0.35	91.9	SURCHARGED
SC-1.014	SC-MH-57	960	minute	100	year	Winter	1+20%	54.647	52.248	0.758	0.57	16.0	SURCHARGED
SC-1.015	SC-MH-58	2160	minute	100	year	Summer	I+20%	54.852	51.342	-0.123	0.42	16.0	OK
SC-1.016	SC-MH-59	7200	minute	100	year	Winter	I+20%	54.331	51.137	-0.108	0.53	16.0	OK
SC-1.017	SC-MH-60	7200	minute	100	year	Winter	I+20%	54.561	51.088	-0.122	0.43	16.0	OK
SC-10.000	SC-MH-61	15	minute	100	year	Winter	I+20%	56.287	55.049	-0.038	0.73	26.6	OK
SC-10.001	SC-MH-62	15	minute	100	year	Winter	I+20%	56.286	55.002	0.053	0.95	54.1	SURCHARGED
SC-11.000	SC-MH-63	15	minute	100	year	Winter	I+20%	56.773	55.849	0.276	1.26	74.0	SURCHARGED
SC-12.000	SC-MH-64	15	minute	100	year	Winter	I+20%	56.479	56.213	0.934	1.20	44.8	FLOOD RISK
SC-13.000	SC-MH-65	15	minute	100	year	Winter	I+20%	56.514	56.029	0.715	0.70	33.0	SURCHARGED
SC-12.001	SC-MH-66	15	minute	100	year	Winter	I+20%	56.727	55.929	0.848	1.22	74.9	SURCHARGED
SC-12.002	SC-MH-67	15	minute	100	year	Winter	I+20%	56.704	55.845	0.811	1.43	96.1	SURCHARGED
SC-11.001	SC-MH-68	15	minute	100	year	Winter	I+20%	56.374	55.323	0.539	1.92	178.4	SURCHARGED
SC-11.002	SC-MH-69	15	minute	100	year	Winter	I+20%	55.952	55.092	0.371	1.33	209.0	SURCHARGED
SC-10.002	SC-MH-70	15	minute	100	year	Winter	I+20%	55.733	54.748	0.216	1.16	269.8	SURCHARGED
SC-10.003	SC-MH-71	15	minute	100	year	Winter	I+20%	55.238	54.077	0.039	1.17	269.0	SURCHARGED
SC-14.000	SC-MH-72	15	minute	100	year	Winter	I+20%	52.797	51.875	0.278	0.95	33.4	SURCHARGED
SC-14.001	SC-MH-73	15	minute	100	year	Winter	I+20%	54.024	51.803	0.299	1.00	32.8	SURCHARGED
SC-10.004	SC-MH-74	15	minute	100	year	Winter	I+20%	55.072	51.761	0.312	1.98	303.7	SURCHARGED
SC-10.005	SC-MH-75	15	minute	100	year	Winter	I+20%	54.715	51.463	0.090	1.54	302.9	SURCHARGED
SC-15.000	SC-MH-76	15	minute	100	year	Winter	I+20%	56.732	55.632	0.100	0.74	39.7	SURCHARGED
SC-15.001	SC-MH-77	15	minute	100	year	Winter	I+20%	56.410	55.515	0.305	0.95	52.6	SURCHARGED
SC-15.002	SC-MH-78	15	minute	100	year	Winter	I+20%	55.976	55.164	0.388	1.17	48.4	SURCHARGED
SC-16.000	SC-MH-79	15	minute	100	year	Winter	I+20%	56.999	56.906	1.107	1.15	68.1	FLOOD RISK
SC-16.001	SC-MH-80	15	minute	100	year	Winter	I+20%	56.075	55.702	0.827	1.79	79.8	SURCHARGED
SC-16.002	SC-MH-81	15	minute	100	year	Winter	I+20%	55.952	55.307	0.555	1.57	96.1	SURCHARGED
SC-16.003	SC-MH-82	15	minute	100	year	Winter	I+20%	55.893	55.153	0.460	1.55	97.0	SURCHARGED
SC-15.003	SC-MH-83	180	minute	100	year	Winter	I+20%	55.821	54.973	0.373	0.75	59.6	SURCHARGED
SC-15.004	SC-MH-84	180	minute	100	year	Winter	I+20%	55.789	54.969	0.391	0.34	66.5	SURCHARGED
SC-17.000	SC-MH-85	180	minute	100	year	Winter	I+20%	55.499	54.960	0.661	0.15	5.6	SURCHARGED
SC-15.005	SC-MH-86	180	minute	100	year	Winter	I+20%	55.581	54.957	0.747	0.84	75.4	SURCHARGED
SC-15.006	SC-MH-87	180	minute	100	year	Winter	I+20%	55.469	54.953	0.763	0.61	74.8	SURCHARGED
SC-15.007	SC-MH-88	180	minute	100	year	Winter	I+20%	55.518	54.951	0.769	0.44	74.2	SURCHARGED
SC-15.008	SC-MH-89	180	minute	100	year	Winter	I+20%	55.336	54.946	1.046	0.76	20.0	SURCHARGED
SC-15.009	SC-MH-90	60	minute	100	year	Summer	I+20%	55.367	54.062	0.181	1.19	45.5	SURCHARGED
SC-15.010	SC-MH-91	60	minute	100	year	Summer	I+20%	54.847	53.635	0.046	1.40	46.4	SURCHARGED
SC-18.000	SC-MH-92	15	minute	100	year	Winter	I+20%	54.985	54.201	0.416	0.95	52.4	SURCHARGED

©1982-2020 Innovyze

O'Connor Sutton Cronin									
9 Prussia Street	MOYGADDY CASTLE SHD								
Dublin 7									
Ireland		Micro							
Date 19/08/2022	Designed by EH	Dcainago							
File	Checked by MK	Diamage							
XP Solutions	Network 2020.1.3								

Summary of Critical Results by Maximum Level (Rank 1) for Surface Water1

									Water	Surcharged		Pipe	
	US/MH							US/CL	Level	Depth	Flow /	Flow	
PN	Name			E	vent			(m)	(m)	(m)	Cap.	(l/s)	Status
SC-18.001	SC-MH-93	15	minute	100	year	Winter	I+20%	54.321	53.730	0.609	1.26	51.8	SURCHARGED
SC-18.002	SC-MH-94	15	minute	100	year	Winter	I+20%	54.007	53.217	0.410	1.65	54.0	SURCHARGED
SC-18.003	SC-MH-95	15	minute	100	year	Winter	I+20%	54.025	53.085	0.334	1.27	84.1	SURCHARGED
SC-18.004	SC-MH-96	15	minute	100	year	Winter	I+20%	54.500	52.776	0.218	1.34	83.9	SURCHARGED
SC-18.005	SC-MH-97	15	minute	100	year	Winter	I+20%	54.743	52.610	0.145	1.58	84.3	SURCHARGED
SC-15.011	SC-MH-98	15	minute	100	year	Winter	I+20%	54.772	52.511	0.080	1.18	170.0	SURCHARGED
SC-15.012	SC-MH-99	15	minute	100	year	Winter	I+20%	54.345	52.323	0.015	1.79	169.1	SURCHARGED
SC-10.006	SC-MH-100	15	minute	100	year	Winter	I+20%	54.518	51.057	-0.274	0.46	473.1	OK
SC-10.007	SC-MH-101	600	minute	100	year	Winter	I+20%	50.313	49.812	0.249	0.41	99.2	SURCHARGED
SC-10.008	SC-MH-102	600	minute	100	year	Winter	I+20%	50.313	49.810	0.259	0.30	98.8	SURCHARGED
SC-10.009	SC-MH-103	600	minute	100	year	Winter	I+20%	50.313	49.806	0.344	0.32	96.4	SURCHARGED
SC-10.010	SC-MH-104	600	minute	100	year	Winter	I+20%	50.313	49.805	0.795	0.83	24.1	SURCHARGED
SC-10.011	SC-MH-105	480	minute	100	year	Winter	I+20%	50.313	48.885	-0.094	0.64	24.1	OK
SC-19.000	SC-MH-106	720	minute	100	year	Winter	I+20%	57.011	54.626	0.515	0.04	3.2	SURCHARGED
SC-20.000	SC-MH-107	15	minute	100	year	Winter	I+20%	56.768	56.147	0.579	0.65	25.1	SURCHARGED
SC-20.001	SC-MH-108	15	minute	100	year	Winter	I+20%	57.936	55.975	0.809	1.88	71.3	SURCHARGED
SC-20.002	SC-MH-109	15	minute	100	year	Winter	I+20%	57.574	55.073	0.161	1.15	74.5	SURCHARGED
SC-20.003	SC-MH-110	30	minute	100	year	Summer	I+20%	57.271	54.899	0.118	1.15	76.6	SURCHARGED
SC-21.000	SC-MH-111	30	minute	100	year	Winter	I+20%	55.670	54.955	0.485	0.50	18.3	SURCHARGED
SC-21.001	SC-MH-112	30	minute	100	year	Winter	I+20%	55.743	54.928	0.612	0.60	22.2	SURCHARGED
SC-21.002	SC-MH-113	30	minute	100	year	Winter	I+20%	56.115	54.885	0.723	1.07	40.8	SURCHARGED
SC-20.004	SC-MH-114	30	minute	100	year	Winter	I+20%	56.779	54.678	0.798	1.13	117.8	SURCHARGED
SC-19.001	SC-MH-115	720	minute	100	year	Winter	I+20%	56.579	54.625	0.968	0.08	10.1	SURCHARGED
SC-19.002	SC-MH-116	720	minute	100	year	Winter	I+20%	56.688	54.623	1.094	0.07	9.7	SURCHARGED
SC-19.003	SC-MH-117	720	minute	100	year	Winter	I+20%	56.070	54.620	1.496	0.25	9.4	SURCHARGED
SC-19.004	SC-MH-118	720	minute	100	year	Winter	I+20%	55.905	54.610	1.683	0.25	9.1	SURCHARGED
SC-19.005	SC-MH-119	720	minute	100	year	Winter	I+20%	56.054	54.603	1.784	0.12	3.7	SURCHARGED

APPENDIX C. Wastewater Design Calculation and Network Details

O'Connor Sutton Cronin		Page 1
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File S665-OCSC-1C-XX-M3-C-0001.02.MDX	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

FOUL SEWERAGE DESIGN

Design Criteria for Foul Network 1

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (l/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.000
Flow Per Person (l/per/day)	222.00	Maximum Backdrop Height (m)	20.000
Persons per House	3.00	Min Design Depth for Optimisation (m)	1.200
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	1.00
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	500

Designed with Level Soffits

Network Design Table for Foul Network 1

PN	Length	Fall	Slope	Area	Houses	Ba	ise	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)		Design
WC-1.000	38.836	0.259	149.9	0.000	31		0.0	1.500	0	225	Pipe/Conduit	ð
WC-2.000	19.565	0.326	60.0	0.000	4		0.0	1.500	0	150	Pipe/Conduit	8
WC-1.001	10.631	0.053	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð
WC-1.002	76.391	0.382	200.0	0.000	27		0.0	1.500	0	225	Pipe/Conduit	8
WC-1.003	83.504	0.418	199.8	0.000	9		0.0	1.500	0	225	Pipe/Conduit	e
WC-1.004	14.929	0.075	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð
WC-3.000	9.275	0.155	59.8	0.000	3		0.0	1.500	0	150	Pipe/Conduit	8
WC-3.001	37.736	0.629	60.0	0.000	6		0.0	1.500	0	150	Pipe/Conduit	.
WC-3.002	13.828	0.106	130.0	0.000	5		0.0	1.500	0	150	Pipe/Conduit	e
WC-3.003	38.894	0.299	130.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	_
WC-3.004	6.409	0.049	130.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	ð
WC-1.005	5.690	0.028	200.0	0.000	8		0.0	1.500	0	225	Pipe/Conduit	ð
WC-1.006	49.051	0.245	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	0
WC-1.007	19.441	0.097	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
WC-1.008	24.791	0.124	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (1/s)
WC-1.000	55.500	0.000	0.0	31	0.0	30	0.45	0.94	37.2	1.4
WC-2.000	55.200	0.000	0.0	4	0.0	11	0.34	1.13	20.0	0.2
WC-1.001	54.799	0.000	0.0	35	0.0	34	0.42	0.81	32.2	1.6
WC-1.002	54.746	0.000	0.0	62	0.0	45	0.50	0.81	32.2	2.9
WC-1.003	54.364	0.000	0.0	71	0.0	49	0.52	0.81	32.2	3.3
WC-1.004	53.946	0.000	0.0	71	0.0	49	0.52	0.81	32.2	3.3
WC-3.000	55.100	0.000	0.0	3	0.0	9	0.31	1.13	20.0	0.1
WC-3.001	54.945	0.000	0.0	9	0.0	15	0.44	1.13	20.0	0.4
WC-3.002	54.316	0.000	0.0	14	0.0	23	0.39	0.77	13.6	0.6
WC-3.003	54.210	0.000	0.0	14	0.0	23	0.39	0.77	13.6	0.6
WC-3.004	53.911	0.000	0.0	14	0.0	23	0.39	0.77	13.6	0.6
WC-1.005	53.786	0.000	0.0	93	0.0	56	0.56	0.81	32.2	4.3
WC-1.006	53.758	0.000	0.0	93	0.0	56	0.56	0.81	32.2	4.3
WC-1.007	53.513	0.000	0.0	93	0.0	56	0.56	0.81	32.2	4.3
WC-1.008	53.415	0.000	0.0	93	0.0	56	0.56	0.81	32.2	4.3

O'Connor Sutton Cronin		Page 2
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File S665-OCSC-1C-XX-M3-C-0001.02.MDX	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	• •						• • •			• •		2
WC-4.000	24.542	0.409	60.0	0.000	4		0.0	1.500	0	150	Pipe/Conduit	8
WC-4.001	22.768	0.379	60.1	0.000	4		0.0	1.500	0	150	Pipe/Conduit	e
WC-4.002	9.987	0.166	60.2	0.000	2		0.0	1.500	0	150	Pipe/Conduit	e
WC-4.003	6.593	0.110	60.0	0.000	0		0.0	1.500	0	150	Pipe/Conduit	Ð
WC-1.009	19.243	0.096	200.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	æ
WC-1.010	12.518	0.063	200.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	æ
WC-1.011	13.813	0.069	200.0	0.000	2		0.0	1.500	0	225	Pipe/Conduit	ē
WC-1.012	21.399	0.107	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ē
WC-1.013	7.893	0.039	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ē
WC-1.014	26.300	0.132	199.2	0.000	3		0.0	1.500	0	225	Pipe/Conduit	Ē
WC-1.015	34.030	0.170	200.0	0.000	4		0.0	1.500	0	225	Pipe/Conduit	Ē
WC-1.016	66.609	0.333	200.0	0.000	13		0.0	1.500	0	225	Pipe/Conduit	Ē
WC-1.017	12.077	0.060	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð
WC-5.000	89.000	1.483	60.0	0.000	10		0.0	1.500	0	225	Pipe/Conduit	A
WC-5.001	51.424	0.396	129.9	0.000	8		0.0	1.500	0	225	Pipe/Conduit	Ē
WC-5.002	23.594	0.181	130.4	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ē
WC-5.003	6.354	0.049	129.7	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ē
WC-1.018	55.328	0.277	200.0	0.000	8		0.0	1.500	0	225	Pipe/Conduit	æ
WC-1.019	19.442	0.097	200.0	0.000	3		0.0	1.500	0	225	Pipe/Conduit	ē
WC-1.020	29.522	0.148	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ē
WC-6.000	15.000	0.250	60.0	0.000	2		0.0	1.500	0	150	Pipe/Conduit	A
WC-6.001	15.623	0.260	60.1	0.000	10		0.0	1.500	0	150	Pipe/Conduit	ð

(m) (ha) Flow $(1/s)$ $(1/s)$ (mm) (m/s) (n/s) $(1/s)$ $(1/s)$	1/s)
WC-4 000 55 400 0 000 0 0 4 0 0 11 0 34 1 13 20 0	0 2
	0.2
	0.4
WC 4.002 54.446 0.000 0.0 10 0.0 16 0.46 1.13 20.0	0.5
WC-4.005 54.446 0.000 0.0 10 0.0 16 0.46 1.15 20.0	0.5
WC-1.009 53.291 0.000 0.0 105 0.0 59 0.58 0.81 32.2	4.9
WC-1.010 53.195 0.000 0.0 107 0.0 60 0.59 0.81 32.2	4.9
WC-1.011 53.133 0.000 0.0 109 0.0 60 0.59 0.81 32.2	5.0
WC-1.012 53.063 0.000 0.0 109 0.0 60 0.59 0.81 32.2	5.0
WC-1.013 52.956 0.000 0.0 109 0.0 60 0.59 0.81 32.2	5.0
WC-1.014 52.917 0.000 0.0 112 0.0 61 0.60 0.81 32.3	5.2
WC-1.015 52.785 0.000 0.0 116 0.0 62 0.60 0.81 32.2	5.4
WC-1.016 52.615 0.000 0.0 129 0.0 66 0.62 0.81 32.2	6.0
WC-1.017 52.282 0.000 0.0 129 0.0 66 0.62 0.81 32.2	6.0
WC-5.000 53.300 0.000 0.0 10 0.0 14 0.43 1.48 59.0	0.5
WC-5.001 51.817 0.000 0.0 18 0.0 23 0.40 1.01 40.0	0.8
WC-5.002 51.421 0.000 0.0 18 0.0 23 0.40 1.00 39.9	0.8
WC-5.003 51.240 0.000 0.0 18 0.0 23 0.40 1.01 40.1	0.8
WC-1.018 51.191 0.000 0.0 155 0.0 72 0.65 0.81 32.2	7.2
WC-1.019 50.914 0.000 0.0 158 0.0 73 0.65 0.81 32.2	7.3
WC-1.020 50.817 0.000 0.0 158 0.0 73 0.65 0.81 32.2	7.3
WC-6.000 55.500 0.000 0.0 2 0.0 8 0.27 1.13 20.0	0.1
WC-6.001 55.250 0.000 0.0 12 0.0 17 0.48 1.13 20.0	0.6

O'Connor Sutton Cronin		Page 3
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File S665-OCSC-1C-XX-M3-C-0001.02.MDX	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
WC-7.000	29.021	0.484	60.0	0.000	8	0.0	1.500	0	150	Pipe/Conduit	8
WC-6.002	67.572	0.338	200.0	0.000	5	0.0	1.500	0	150	Pipe/Conduit	æ
WC-8.000	53.545	0.892	60.0	0.000	13	0.0	1.500	0	150	Pipe/Conduit	8
WC-6.003	87.136	0.436	199.9	0.000	14	0.0	1.500	0	225	Pipe/Conduit	8
WC-9.000	27.037	0.451	59.9	0.000	12	0.0	1.500	0	150	Pipe/Conduit	ð
WC-6.004	22.144	0.111	200.0	0.000	8	0.0	1.500	0	225	Pipe/Conduit	æ
WC-6.005	17.225	0.086	200.3	0.000	5	0.0	1.500	0	225	Pipe/Conduit	ě
WC-6.006	19.346	0.097	200.0	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ð
WC-10.000	34.582	0.576	60.0	0.000	12	0.0	1.500	0	150	Pipe/Conduit	ð
WC-6.007	16.863	0.084	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	æ
WC-6.008	16.883	0.084	200.0	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ě
WC-6.009	29.822	0.149	200.0	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ď
WC-11.000	42.273	0.141	299.8	0.000	14	0.0	1.500	0	300	Pipe/Conduit	a
WC-11.001	50.038	0.167	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	æ
WC-11.002	65.219	0.217	300.5	0.000	4	0.0	1.500	0	300	Pipe/Conduit	ĕ
WC-11.003	67.918	0.226	300.0	0.000	4	0.0	1.500	0	300	Pipe/Conduit	Ä
WC-11.004	67.833	0.226	300.0	0.000	4	0.0	1.500	0	300	Pipe/Conduit	ě
WC-11.005	25.128	0.084	299.1	0.000	3	0.0	1.500	0	300	Pipe/Conduit	ē
WC-11.006	29.327	0.098	299.3	0.000	7	0.0	1.500	0	300	Pipe/Conduit	- -
WC-11.007	15.915	0.053	300.0	0.000	10	0.0	1.500	0	300	Pipe/Conduit	<u>-</u>

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (l/s)	Flow (l/s)
WC-7.000	54.900	0.000	0.0	8	0.0	14	0.42	1.13	20.0	0.4
WC-6.002	54.416	0.000	0.0	25	0.0	33	0.40	0.62	10.9	1.2
WC-8.000	56.100	0.000	0.0	13	0.0	18	0.50	1.13	20.0	0.6
WC-6.003	54.003	0.000	0.0	52	0.0	42	0.47	0.81	32.2	2.4
WC-9.000	54.200	0.000	0.0	12	0.0	17	0.48	1.13	20.0	0.6
WC-6.004	53.567	0.000	0.0	72	0.0	49	0.52	0.81	32.2	3.3
WC-6.005	53.456	0.000	0.0	77	0.0	51	0.53	0.81	32.2	3.6
WC-6.006	53.370	0.000	0.0	80	0.0	52	0.54	0.81	32.2	3.7
WC-10.000	55.400	0.000	0.0	12	0.0	17	0.48	1.13	20.0	0.6
WC-6.007	53.274	0.000	0.0	92	0.0	55	0.56	0.81	32.2	4.3
WC-6.008	53.189	0.000	0.0	95	0.0	56	0.57	0.81	32.2	4.4
WC-6.009	53.105	0.000	0.0	98	0.0	57	0.57	0.81	32.2	4.5
WC-11.000	55.600	0.000	0.0	14	0.0	23	0.26	0.80	56.5	0.6
WC-11.001	55.459	0.000	0.0	14	0.0	23	0.26	0.80	56.4	0.6
WC-11.002	55.292	0.000	0.0	18	0.0	26	0.28	0.80	56.4	0.8
WC-11.003	55.075	0.000	0.0	22	0.0	28	0.30	0.80	56.4	1.0
WC-11.004	54.849	0.000	0.0	26	0.0	31	0.32	0.80	56.4	1.2
WC-11.005	54.623	0.000	0.0	29	0.0	32	0.33	0.80	56.5	1.3
WC-11.006	54.539	0.000	0.0	36	0.0	35	0.35	0.80	56.5	1.7
WC-11.007	54.441	0.000	0.0	46	0.0	40	0.38	0.80	56.4	2.1

O'Connor Sutton Cronin		Page 4
9 Prussia Street	MOYGADDY CASTLE SHD	
Dublin 7		
Ireland		Micro
Date 19/08/2022	Designed by EH	Dcainago
File S665-OCSC-1C-XX-M3-C-0001.02.MDX	Checked by MK	Drainage
XP Solutions	Network 2020.1.3	

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
WC-11.008	9.755	0.033	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	æ
WC-6.010	36.776	0.184	200.0	0.000	5	0.0	1.500	0	300	Pipe/Conduit	æ
WC-1.021	33.360	0.111	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	æ
WC-1.022	39.596	0.132	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	ĕ
WC-12.000	29.875	0.199	150.1	0.000	31	0.0	1.500	0	225	Pipe/Conduit	8
WC-13.000	49.373	0.823	60.0	0.000	22	0.0	1.500	0	150	Pipe/Conduit	8
WC-13.001	6.719	0.112	60.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	Ē
WC-13.002	11.719	0.195	60.0	0.000	0	0.0	1.500	0	150	Pipe/Conduit	ð
WC-12.001	21.261	0.106	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď
WC-12.002	21.116	0.106	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	đ
WC-1.023	41.441	0.138	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	đ
WC-1.024	35.967	0.120	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.025	10.346	0.034	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.026	63.670	0.212	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.027	81.329	0.271	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.028	45.613	0.152	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.029	45.613	0.152	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.030	77.721	0.259	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.031	49.653	0.166	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.032	21.087	0.070	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	e
WC-1.033	13.893	0.046	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d
WC-1.034	9.217	0.031	300.0	0.000	0	0.0	1.500	0	300	Pipe/Conduit	d

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/	ΣHSe s)	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
WC-11.008	54.388	0.000	0	.0 40	6 0.0	40	0.38	0.80	56.4	2.1
WC-6.010	52.881	0.000	0	.0 149	9 0.0	64	0.63	0.98	69.2	6.9
WC-1.021	50.595	0.000	0	.0 30'	7 0.0	103	0.67	0.80	56.4	14.2
WC-1.022	50.483	0.000	0	.0 30	7 0.0	103	0.67	0.80	56.4	14.2
WC-12.000	55.000	0.000	0	.0 33	L 0.0	30	0.45	0.94	37.2	1.4
WC-13.000	55.000	0.000	0	.0 22	2 0.0	23	0.58	1.13	20.0	1.0
WC-13.001	54.177	0.000	0	.0 22	2 0.0	23	0.58	1.13	20.0	1.0
WC-13.002	54.065	0.000	0	.0 22	2 0.0	23	0.58	1.13	20.0	1.0
WC-12.001	53.795	0.000	0	.0 53	3 0.0	42	0.48	0.81	32.2	2.5
WC-12.002	53.688	0.000	0	.0 53	3 0.0	42	0.48	0.81	32.2	2.5
WC-1.023	50.351	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.024	50.213	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.025	50.093	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.026	50.059	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.027	49.847	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.028	49.576	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.029	49.423	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.030	49.271	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.031	49.012	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.032	48.847	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.033	48.777	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7
WC-1.034	48.730	0.000	0	.0 360	0.0	112	0.70	0.80	56.4	16.7

©1982-2020 Innovyze

O'Connor Sutton Cronin	Page 5		
9 Prussia Street	MOYGADDY CASTLE SHD		
Dublin 7			
Ireland		Micro	
Date 19/08/2022	Designed by EH	Dcainago	
File S665-OCSC-1C-XX-M3-C-0001.02.MDX	Checked by MK	Drainage	
XP Solutions	Network 2020.1.3		

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
WC-1.035	10.000	0.033	300.0	0.000	0		0.0	1.500	0	300	Pipe/Conduit	ð

PN	US/IL	Σ Area	ΣΕ	Base	Σ Hse	Add Flow	P.Dep	P.Vel	Vel	Cap	Flow
	(m)	(ha)	Flow	(l/s)		(l/s)	(mm)	(m/s)	(m/s)	(1/s)	(1/s)
WC-1.035	48.700	0.000		0.0	360	0.0	112	0.70	0.80	56.4	16.7

APPENDIX D. Irish Water Correspondence

Mark Killian

9 Prussia Street Stoneybatter Dublin 7 D07KT57

20 October 2021

Re: CDS21003384 pre-connection enquiry - Subject to contract | Contract denied Connection for Housing Development of 390 unit(s) at Phase 1A, Moygaddy, Meath

Dear Sir/Madam,

Irish Water has reviewed your pre-connection enquiry in relation to a Water & Wastewater connection at Phase 1A, Moygaddy, Meath (the **Premises**). Based upon the details you have provided with your pre-connection enquiry and on our desk top analysis of the capacity currently available in the Irish Water network(s) as assessed by Irish Water, we wish to advise you that your proposed connection to the Irish Water network(s) can be facilitated at this moment in time.

SERVICE	OUTCOME OF PRE-CONNECTION ENQUIRY <u>THIS IS NOT A CONNECTION OFFER. YOU MUST APPLY FOR A</u> <u>CONNECTION(S) TO THE IRISH WATER NETWORK(S) IF YOU WISH</u> <u>TO PROCEED.</u>									
Water Connection	There are water network capacity constraints in this catchment.									
Wastewater Connection	There are wastewater network capacity constraints in this catchment.									
SITE SPECIFIC COMMENTS										
Water Connection	 In order to accommodate the proposed connection at this development, upgrade works are required to increase the capacity of the Irish Water network. Irish Water does not currently have any plans to carry out the works required to provide the necessary upgrade and capacity. Should you wish to have such upgrade works progressed, Irish Water will require you to provide a contribution of a relevant portion of the costs for the required upgrades, please contact Irish Water to discuss this further. 1. Connection main – Approx. 50m of new 250mm ID main to be laid to connect the site development (see yellow section below) to the new 300mm ID upgrade main. Connection main shown below (See green line in figure 1). 2. Trunk/Distribution main 1 – Approx. 950m of 300mm ID main to be laid to link connection main and new 350mm ID main (see red) 									

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Yvonne Harris, Brendan Murphy, Maria O'Dwyer

Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

	 dashed line in figure 1). To service the lands a total of 3500m of 300mm ID main (seen as black line in figure 1) which links in with Mariavilla. 3. Trunk/Distribution main 2 – Approx. 1400m of new 350mm ID main to be laid to link new 300mm ID TM 1 and the existing 400mm AC main together. 4. Onsite storage required for commercial units, 24-hour storage at ADPW demand, storage units must also be able to be refilled from empty within 12-hour period
	IW currently have a project 'Maynooth East Ring Road' which is currently at design stage and on our current investment plan consisting of approx. 1400m of 350mm ID main (shown below (black dashed line in figure 2) and will be carried out in conjunction with Kildare County Councils 'Maynooth Eastern Ring Road' project.
	In order to accommodate the proposed connection at the Premises, upgrade works are required to increase the capacity of the Maynooth Wastewater Pump Station and Rising Main. Irish Water currently has a project on our current investment plan which will provide the necessary upgrade and capacity. This upgrade project is currently scheduled to be completed by Q4 2025 (this may be subject to change, as planning has yet to be granted in both Kildare and Meath and the appropriate consents for the project).
Wastewater Connection	The addition discharge would cause a back up of flows in the existing gravity network entering the pump station. Upgrade works would be required to increase the capacity of the wastewater network (upgrade of approx. 175m of network directly upstream of the Pump Station). Irish Water are currently reviewing these works which are not currently on the Capital Investment Plan. Please contact Irish Water to discuss this further.
	Where a connection is proposed in advance of the delivery of strategic solutions in this area, Irish water are willing to review Storm Sewer Separation proposals (from the combined network) in the Maynooth area, in order to provide additional wastewater capacity. This would require co-operation and agreement from Kildare County Council, as the storm drainage authority.
	Further measures are currently being investigated by Irish Water in this area via the Capital Maintenance Programme, including:
	- identifying and repairing areas of infiltration
	- control of pumping stations in the catchment - increasing local storage in the area

The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this development shall comply with the Irish Water Connections and Developer Services Standard Details and Codes of Practice that are available on the Irish Water website. Irish Water reserves the right to supplement these requirements with Codes of Practice and these will be issued with the connection agreement.

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Whilst every care has been taken in its compilation Irish Water gives this information as to the position of its underground network as a general guide only on the strict understanding that it is based on the best available information provided by each Local Authority in Ireland to Irish Water. Irish Water can assume no responsibility for and give no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided and does not accept any liability whatsoever arising from any errors or omissions. This information should not be relied upon in the event of excavations or any other works being carried out in the vicinity of the Irish Water underground network. The onus is on the parties carrying out excavations or any other works to ensure the exact location of the Irish Water underground network is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

General Notes:

- 1) The initial assessment referred to above is carried out taking into account water demand and wastewater discharge volumes and infrastructure details on the date of the assessment. The availability of capacity may change at any date after this assessment.
- This feedback does not constitute a contract in whole or in part to provide a connection to any Irish Water infrastructure. All feasibility assessments are subject to the constraints of the Irish Water Capital Investment Plan.

- 3) The feedback provided is subject to a Connection Agreement/contract being signed at a later date.
- 4) A Connection Agreement will be required to commencing the connection works associated with the enquiry this can be applied for at https://www.water.ie/connections/get-connected/
- 5) A Connection Agreement cannot be issued until all statutory approvals are successfully in place.
- 6) Irish Water Connection Policy/ Charges can be found at https://www.water.ie/connections/information/connection-charges/
- 7) Please note the Confirmation of Feasibility does not extend to your fire flow requirements.
- 8) Irish Water is not responsible for the management or disposal of storm water or ground waters. You are advised to contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges
- 9) To access Irish Water Maps email datarequests@water.ie
- 10) All works to the Irish Water infrastructure, including works in the Public Space, shall have to be carried out by Irish Water.

If you have any further questions, please contact Paul Lowry from the design team on 018230377 or email paullowr@water.ie For further information, visit **www.water.ie/connections.**

Yours sincerely,

Monne Maesis

Yvonne Harris Head of Customer Operations

APPENDIX E. Site Investigation Report

S.I. Ltd Contract No: 5863

Client:Sky Castle LtdEngineer:OCSCContractor:Site Investigations Ltd

<u>Moygaddy,</u> <u>Maynooth, Co. Meath</u> <u>Site Investigation Report</u>

Prepared by:

Stephen Letch

Issue Date:	12/08/2021
Status	Final
Revision	2

Cont

<u>tents:</u>		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Laboratory Testing	4
5.	Ground Conditions	4
6.	Recommendations and Conclusions	5

Appendices:

- Cable Percussive Borehole Logs 1.
- 2. Rotary Corehole Logs and Photographs
- 3. Trial Pit Logs and Photographs
- 4. Soakaway Test Results
- 5. Dynamic Probe Logs
- Geotechnical Soil Laboratory Test Results 6.
- 7. Geotechnical Rock Laboratory Test Results
- 8. Survey Data

1. Introduction

On the instructions of OCSC, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Moygaddy, Maynooth, Co. Meath. The investigation was completed for the residential development on the site and was completed on behalf of the Client, Sky Castle Ltd. The fieldworks were started in June and completed in July 2021.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located to the north of Maynooth with the Kildare-Meath border running to the south of the site with Maynooth in Kildare and the site in Meath. Carton Demense is to the east of site with Dublin city further to the east. The first map below shows the location of the site to the east of Dublin and the second map shows the location of the site to the north of Maynooth town.

3. Fieldwork

The fieldworks comprised a programme of cable percussive boreholes, rotary coreholes, trial pits and dynamic probes. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design.

The fieldworks comprised of the following:

- 18 No. cable percussive boreholes
- 16 No. rotary coreholes
- 21 No. trial pits with soakaway tests
- 84 No. dynamic probes

3.1. Cable Percussive Boreholes with Rotary Coreholes

Cable percussion boring was undertaken at 18 No. locations using a Dando 150 rig and constructed 200mm diameter boreholes. The boreholes terminated at depths ranging from 3.00mbgl (BH10) to 6.80mbgl (BH15 and BH16) after 1.5hrs chiselling with no further progress. It was not possible to collect undisturbed samples due to the granular soils encountered so bulk disturbed samples were recovered at regular intervals.

To test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450mm and the cone is driven 150mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300mm and the blows recorded to report the N-Value. The report shows the N-Value with the 75mm incremental blows listed in brackets (e.g., BH01 at 2.00mbgl where N=16-(2,3/3,4,4,5)). Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g., BH01 at 1.00mbgl where N=50-(3,4/50 for 85mm)).

The cable percussive borehole logs are presented in Appendix 1.

3.2. Rotary Coreholes

At 16 No. locations, rotary coreholes were completed to investigate the depth and type of bedrock. After the investigation started, RC01, RC02, RC03 and RC15 were cancelled but the numbering remained as scheduled so these numbers are missing in the sequence of rotary coreholes. The rotary drilling was carried out using a Sondeq SS71 top drive rig. Open hole drilling techniques were used to advance through the overburden where encountered and bedrock was recovered at 10 No. locations and the bedrock was then cored with the corehole terminated when 3m of core was recovered. At 6 No. locations, no bedrock was encountered when the corehole reached 8mbgl and the corehole was terminated and backfilled.

Once the coreholes were completed, the rock cores were returned to SIL, where they were logged and photographed by a SIL geotechnical engineer. Provided on the logs are engineering

geological descriptions of the rock cores with details of the bedding/discontinuities and mechanical indices for each core run, i.e., TCR, SCR, RQD and Fracture Index.

The rotary corehole logs and photographs are presented in Appendix 2.

3.3. Trial Pits with Soakaway Tests

21 No. trial pits were excavated using a wheeled excavator. The pits were logged and photographed by SIL geotechnical engineer and representative disturbed bulk samples were recovered as the pits were excavated, which were returned to the laboratory for geotechnical testing. Groundwater ingresses and pit wall stability were also recorded as the excavations progressed.

At the base of the trial pits, soakaway tests were completed and logged by SIL geotechnical engineer. BRE Special Digest 365 stipulates that the pit should be filled three times and that the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall at a steady rate, then the test is deemed to have failed and the area is unsuitable for storm water drainage.

The trial pit logs and photographs are presented in Appendix 3 and soakaway test results are presented in Appendix 4.

3.4. Dynamic Probes

At 84 No. locations, dynamic probes were completed using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method comprising a 50kg weight, 500mm drop height and a 50mm diameter (90°) cone. The number of blows required to drive the cone each 100mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

> Granular Soils: DPH N₁₀₀ x 2.5 = SPT N value Cohesive Soils: $C_u = 15 \times DPH N_{100} + 30 \text{ kN/m}^2$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the undrained shear strength of cohesive soils.

The dynamic probe logs are presented in Appendix 5.

3.5. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log along with a site plan in Appendix 8.

4. Laboratory Testing

Geotechnical soil laboratory testing was completed on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 10 No. moisture contents
- 10 No. Atterberg limits
- 10 No. particle size gradings
- 21 No. California Bearing Ratio tests
- 8 No. pH, sulphate and chloride content

Geotechnical rock testing was also completed on the core samples and consisted of the following:

• 20 No. point loads

The geotechnical soil laboratory test results are presented in Appendix 6 with the rock laboratory tests provided in Appendix 7.

5. Ground Conditions

5.1. Overburden

The natural ground conditions in the boreholes and trial pits are consistent with brown overlying black slightly sandy gravelly silty CLAY with cobbles and boulders. These natural soils are overconsolidated lodgment till which is encountered across the North Leinster region with several papers discussing the engineering characteristics of the soil. The brown and brown grey soils are the weathered surface of the underlying black clays and the gravel and cobbles are generally angular to subrounded and predominantly limestone in origin. The SPT N-values range from 7 to 15 at 1.00mbgl and increase to between 12 and 21 at 2.00mbgl although BH14 did record a value of 7 at this depth. The values then continue to increase with depth as the very stiff black CLAY is encountered.

Laboratory tests of the shallow cohesive soils recorded CLAY soils with low and intermediate plasticity indices of 12% to 18% recorded. The particle size distribution curves were poorly sorted straight-line curves with 21 to 53% fines content.

5.2. Bedrock

Bedrock was recovered from depths ranging from 2.80mbgl (RC10) to 7.80mbgl (RC20) and was greater than 8m deep at 5 No. locations to the east of the site. The core recovered shows that bedrock is strong to very strong light grey fine grained argillaceous LIMESTONE interbedded with moderately strong dark grey calcareous MUDSTONE with pyrite crystals, occasional fossils and calcite veins. The core showed a fresh to slightly weathered state. The discontinuities are generally smooth to rough, planar to slightly undulating, tight to open, dip angles ranging from sub-horizontal to sub-vertical and the surfaces are clean with some grey stained, calcite crystals on the surface and some clay infill.

5.3. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater ingresses were recorded in five boreholes, at 1.90mbgl at BH07 and between 3.20mbgl and 3.60mbgl in BH05, BH14, BH16 and BH17. All ingresses were sealed off by the casing as the drilling advanced and therefore indicates perched water lenses. There were water ingresses into 10 No. trial pits across the site, at depths ranging from 1.50mbgl (TP12) to 2.60mbgl (TP21) with ingresses logged as seepages to medium rates

6. Recommendations and Conclusions

Please note the following caveats:

The recommendations given, and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should be specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

6.1. Shallow Foundations

Due to the unknown depth of foundation and no longer-term groundwater information, this analysis assumes the groundwater will not influence the construction or performance of these foundations.

The borehole encountered firm brown slightly sandy slightly gravelly silty CLAY at 1.00mbgl and the SPT N-value at this depth generally ranges from 9 to 15. Two holes, BH14 and BH17, recorded lower values of 7 and 8 respectively but the value of 9 has been chosen for analysis of the soils.

Using a correlation proposed by Stroud and Butler between SPT N-values and plasticity indices, the SPT N-value can be used to calculate the undrained shear strength. With the low to intermediate plasticity indexes recorded in the laboratory for the soils encountered on site, this correlation is C_u =6N. Therefore, using the lower value of 9, this indicates that the undrained shear strength of the CLAY is 54kN/m². This can be used to calculate the ultimate bearing capacity, and this has been calculated to be 295kN/m². Finally, a factor of safety is applied and with a factor of 3, an allowable bearing capacity of 100kN/m² would be anticipated using the lower SPT values.

The soils recorded values of 12 to 21 at 2.00mbgl. This SPT N-value of 12 indicates a C_u of 72kN/m², an ultimate bearing capacity of 405kN/m² and finally an allowable bearing capacity of 135kN/m².

The dynamic probes confirm that the soils are firm to stiff with values of 2 or greater recorded across the site and would correlate with the SPT N-values.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- Foundations are to be constructed on a level formation of uniform material type (described above).
- The bulk unit weight of the material in this stratum has a minimum density of 19kN/m³.
- All bearing capacity calculations allow for a settlement of 25mm.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least although TP05 did record pit wall instability. Therefore, all slopes should be evaluated upon excavation and regular inspections should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period.

6.2. Groundwater

The caveats below relating to interpretation of groundwater levels should be noted: There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously, groundwater was encountered in five boreholes and ten trial pits at depths ranging from 1.50mbgl to 3.60mbgl.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. Based on this information at the exploratory hole locations to date, it is considered likely that any shallow ingress (less than 2.00mbgl) into excavations of the CLAY will be slow to medium. If granular soils are encountered in shallow excavations, then the possibility of water ingressing into an excavation increase.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

6.3. Soakaway Tests

At 10 No. locations, the soakaway tests failed the specification as water ingressed into the pits. This indicates that the soils are already saturated and therefore, unsuitable for soakaway design.

At the remaining locations, the soakaway tests failed the specification as the water level did not fall sufficiently enough to complete the test. The BRE Digest stipulates that the pit should half empty within 24hrs, and extrapolation indicates this condition would not be satisfied. The tests were terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation. The unsuitability of the soils for soakaways is further suggested by the soil descriptions of the materials in this area of the site where the soakaway was completed, i.e., well compacted clay soils.

6.4. Pavement Design

The CBR test results in Appendix 4 indicate CBR values ranging from 4.1% to 11.6%.

The CBR samples were recovered from 0.50mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

6.5. Aggressive Ground Conditions

The chemical test results in Appendix 4 indicate a general pH value between 8.59 and 8.80, which is close to neutral and below the level of 9, therefore no special precautions are required.

The maximum value obtained for water soluble sulphate was $127mg/l as SO_3$. The BRE Special Digest 1:2005 - Concrete in Aggressive Ground' guidelines require SO₄ values and after conversion (SO₄ = SO₃ x 1.2), the maximum value of 152mg/l shows Class 1 conditions and no special precautions are required.

Appendix 1 Cable Percussive Borehole Logs

Contra 580	ct No: 63	Cable Percussion Borehole Log								Borehole No: BH01		
Contrac	et:	Moygaddy	Easting	:	693986	6.514		Date Started:	30/06/2021			
Locatio	n:	Maynooth, Co. Meath	Northin	g:	739217	7.399		Date Completed:	30/06	30/06/2021		
Client:		Sky Castle Ltd	Elevatio	on:	56.45			Drilled By:	G. Macken			
Engine	er:	OCSC	Boreho Diamet	le er:	200mm	ו		Status:	FINA	L		
Depth	n (m)	Stratum Description	Legend.	Level	(mOD)	Sam	nples	and Insitu Tes	ts	Water Strike	Backfill	
0.5 –	0.20	TOPSOIL. Firm brown sandy slightly gravelly silty CLAY with low cobble content.		Scale 	56.25	Depth	Туре	Result				
1.0 — — — 1.5 —	1.60			55.5 — — 55.0 —	54.85	1.00 1.00	B C	GM75 50 (3,4/50 85mm)	for			
2.0		cobble content.		54.5 — 54.5 — 54.0 —		2.00 2.00	B C	GM76 N=16 (2,3/3,	4,4,5)			
3.0	2.80	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.			53.65	3.00 3.00	B C	GM77 50 (8,11/50 200mm) for			
3.5				53.0 — 52.5 — 		4.00 4.00	B C	GM78 N=48	,			
4.5				52.0 — - - 51.5 —		5.00	в	(12,13/11,14 1)	12,1			
5.5	5.40 5.50	Obstruction - possible boulders. End of Borehole at 5.50m			51.05 50.95	5.00 5.50	с С	50 (25 fc 135mm/50 125mm 50 (25 fc	or) for) or			
6.0				50.5				5mm/50 for (0mm)			
6.5				50.0								
7.0				49.0								
8.0				48.5 —								
8.5				48.0								
9.0				47.5 — 								
9.5				47.0								
		Chiselling:Water Strikes:Water Details:From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water Depth:For Depth:1.301.5001:001.5001:3001:30DifferenceDifference	Install From: To	ation: b: Pipe	E From: 7	Backfill: To: Type	e: B gs to	Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed Irbed onmental SPT oon SPT	

Contra	ict No: 63	Cable Percussion Borehole Log								B	Borehole No: BH02		
Contrac	ot:	Moygaddy	East	ing:		69392	6.010		Date Started:	29/06	29/06/2021		
Locatio	n:	Maynooth, Co. Meath	Nort	hing:	:	739294.840			Date Completed: 29/06		9/06/2021		
Client:		Sky Castle Ltd	Elev	atior	ו:	56.95			Drilled By:	Drilled By: G. Ma		. Macken	
Engine	er:	ocsc	Bore Dian	ehole neter	e r:	200m	m		Status:	FINA	L		
Depth	h (m)	Stratum Description	Lege	nd	evel	(mOD)	S	amples	s and Insitu Tes	sts	Water	Backfill	
Scale	Depth				Scale _	Depth	Dept	n Type	e Result		Strike		
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.				56.75							
1.0				o XI VI	 56.0 —		1.00	В	GM70				
1.5	1.20	Stiff brown sandy slightly gravelly silty CLAY with high cobble content			- - 55.5 —	55.75	1.00	C	N=9 (2,1/1,2	2,3,3)			
-					-								
2.0					55.0 — 		2.00	B C	GM71 N=21 (5,6/6,	4,5,6)			
2.5	2.60				54.5 _	54.35							
30-		Very stiff black slightly sandy gravelly slity CLAY with low cobble content.		N N N N			3.00	B	GM72				
-							3.00	C	N=47 (6,9/9,12,12	2,14)			
3.5 —				- XI XI XI	53.5 — — —					. ,			
4.0					53.0		4.00	B	GM73				
4.5					52.5 — -		4.00		(8,8/12,12,1	3,13)			
5.0 —				× C	52.0 —		5.00	В	GM74				
5.5 —	5.20	Obstruction - possible boulders. End of Borehole at 5.20m			51.5 —	51.75	5.00 5.20	C C	50 (25 fo 95mm/50 10mm)	or for			
6.0-					 51.0 —				50 (25 fc 5mm/50 for	or 5mm)			
0.5													
7.0					50.0								
7.5 — — —					49.5 — - -								
8.0					49.0 —								
8.5 —					48.5								
9.0					48.0 —								
9.5 —					47.5 _								
					-								
		Chipolling: Mates Strikes, Mates Det 1	1	toll-'	ion		Peelef		Doneste		Locard		
a		From: To: Time: Strike: Rose: Sealed Date: Dettails: Dettails:	From:	To:	Pipe	: From:	To:	Гуре: Е	Remarks: Borehole terminate	d due	B: Bulk D: Disturb	ed	
S		3.70 3.80 00:45 19/07 5.20 Dry 5.20 5.20 01:30 19/07 5.20 Dry				0.00	5.20 A	risings t	o obstruction.		U: Undist ES: Enviro W: Water C: Cone S S: Split sr	urbed onmental SPT	

Contra 586	ct No: 63	Cable Percussion	on Borehole Log						Borehole No: BH03		
Contrac	:t:	Moygaddy	Easting	:	694117	.023		Date Started:	22/07/2021		
Location	n:	Maynooth, Co. Meath	Northin	Northing: 739155.527			Date Completed: 2		22/07/2021		
Client:		Sky Castle Ltd	Elevatio	on:	55.01			Drilled By:	G. Macken		
Enginee	er:	OCSC	Boreho Diamet	le er:	200mm	1		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sam	ples	and Insitu Tes	ts	Water Strike	Backfill
Scale 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.5 6.0 7.5	Depth 0.20 1.50 2.80 4.90 5.00	TOPSOIL. Firm brown sandy slightly gravelly silty CLAY with low cobble content. Firm brown sandy slightly gravelly silty CLAY with high cobble content. Very stiff black slightly sandy gravelly silty CLAY with low cobble content. Qbstruction - possible boulders. End of Borehole at 5.00m		Scale 54.5 54.0 53.5 53.0 52.5 52.0 51.5 50.5 50.6 49.0 48.5 48.0 48.0	Depth 54.81 53.51 52.21 50.11 50.01	Depth - 1.00 - 1.00 - 2.00 - 2.00 - 3.00 - 3.00 - 4.00 - 4.00 - 5.00 -	B C B C B C B C C C	GM66 N=10 (2,2/3, GM67 N=12 (4,5/3, GM68 N=49 (6,6/11,12,1 GM69 N=50 (8,11/5 255mm 50 (25 fc 5mm/50 for st	2,3,2) 3,3,3) 3,13) 50 for) 5mm)	Strike	Backfill
8.0				47.0							
8.5				46.5 -							
9.0				40.0 45.5 							
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth: Sealed Date: Hole Depth: De	Install	ation: b: Pipe	E From: 7 0.00 5	Backfill: To: Type: .00 Arising	B s to	Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed Irbed onmental PT oon SPT
Contra	ct No: 63	Cable Percussion	n B	orel	nole	Lo	g		Bo	orehole BH04	No: 1
-----------------	--------------	---	---	--	---------------------------------	------------------------	----------------	--------------------------------------	------------------	--	-------------------------
Contrac	ct:	Moygaddy	Eastir	ıg:	693732	2.812		Date Started:	02/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northi	ng:	739457	7.539		Date Completed:	02/07	/2021	
Client:		Sky Castle Ltd	Eleva	tion:	56.85			Drilled By:	G. Ma	acken	
Enginee	er:	ocsc	Boreh Diame	ole eter:	200mm	n		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legen	Level	(mOD)	Sar	nples	and Insitu Tes	ts	Water	Backfill
Scale	Depth	TOPSOIL		Scale	Depth	Depth	Туре	Result		Strike	
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		전 종 종 종 종 종 종 종 종 종 종 종 종 종 종 종 종 종 종 종	56.65						
1.0				56.0 —	-	1.00	в	GM86			
- - 1.5 -	1 50			55.5 -	55 35	1.00	С	N=15 (3,4/4,	5,3,3)		
	1.00	Stiff brown sandy slightly gravelly silty CLAY with high cobble content.		× • • • • • • • • • • • • • •			_				
2.0				× 545 -		2.00 2.00	B C	GM87 N=17 (4,4/3,	5,5,4)		
2.5 -				· · · · · · · · · · · · · · · · · · ·	-						
3.0	3.10	Very stiff block slightly condy grovelly silty CLAV with	x ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	54.0 — ×	53.75	3.00	B	GM88			
3.5 —		low cobble content.		× 53.5 - × 53.5 -	-	5.00	U	(5,8/8,12,14	4,15)		
4.0				53.0 -		4.00	R	GM89			
4.0			<u>x ~ ~ 0</u>	52.5 -	-	4.00	C	50 (9,12/50 200mm) for)		
4.5				* * * * * * * * * * *							
5.0				× 52.0 *e *e	-	5.00 5.00	B C	GM90 50 (12,13/5	0 for		
5.5 -			<u>x o</u>	51.5 - 51.5 -				110mm)		
6.0			x	51.0 —	-	6.00	В	GM91			
6.5	6.20 6.30	Obstruction - possible boulders. End of Borehole at 6.30m		50.5 -	50.65 50.55	6.00 6.30	C C	50 (15,10/5 100mm 50 (25 fc	0 for) or		
7.0				50.0	-			5mm/50 for \$	5mm)		
				49.5 -							
7.5 -				49.0 -	-						
8.0				48.5 -							
8.5 -				-	-						
9.0				48.0							
9.5				47.5 -							
				47.0							
		Chiselling: Water Strikes: Water Details:	Insta	Illation:		Backfill:		Remarks:		Legend:	
		From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water Depth:If6.206.3001:30Image: Comparison of the compa	From:	To: Pipe	e: From: ⁻ 0.00 6	To: Typ 5.30 Arisir	e: B ngs to	orehole terminated o obstruction.	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental

Contra	ict No: 63	Cable Percussion	n Bo	oreł	nole	Lo	g		B	orehole BH0	No: 5
Contrac	ot:	Moygaddy	Easting	j:	693928	3.844		Date Started:	21/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northin	g:	739604	1.500		Date Completed:	21/07	/2021	
Client:		Sky Castle Ltd	Elevati	on:	58.72			Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Boreho Diamet	le er:	200mm	ı		Status:	FINA		
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sar	mples	and Insitu Tes	sts	Water Strike	Backfill
Scale	0.20	TOPSOIL. Brown sandy slightly gravelly silty CLAY with low cobble content.		58.5 - 	58.52	Deptn	Туре	Result			
1.0	1.10	Firm becoming stiff brown sandy slightly gravelly silty CLAY with high cobble content.		58.0 — - - 57.5 —	57.62	1.00 1.00	B C	GM61 N=9 (1,1/2,2	2,3,2)		
1.5				57.0 — 		2.00	В	GM62			
2.5	2 90			56.5 - - - 56.0	55.02	2.00	С	N=20 (3,5/5,	6,4,5)		
3.0	2.00	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.		- - - 55.5 -	55.92	3.00 3.00	B C	GM63 N=43 (5,8/8,9,12	.,14)		
3.5				- 55.0 —	-	4.00	D	CM64			
4.0			x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0	54.5 -		4.00	C	N=48 (8,10/10,11,1	13,14)		
5.0	5 10		x x x	54.0	53 62	5.00	В	GM65			
5.5	5.20	Obstruction - possible boulders. End of Borehole at 5.20m		53.5	53.52	5.00 5.20	C C	50 (25 fc 60mm/50 15mm)	or for		
6.0				53.0 — - - 52.5 —				5mm/50 for	5mm)		
6.5				52.0							
7.0				- - 51.5 —	- - -						
7.5 -				51.0	-						
8.0				50.5 – 	- - -						
9.0				50.0	-						
9.5				49.5 - - - 49.0 -							
				-							
		Chiselling:Water Strikes:Water Details:From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water Depth:Mater Depth:Mater Depth:Mater Depth:Final Sealed5.105.2001:303.202.903.6015/075.20DryInclusion	Install From: To	ation: p: Pipe	E From: 7	Backfill: To: Typ 5.20 Arisi	pe: B ngs to	Remarks: orehole terminate obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed Irbed onmental PT oon SPT

Contra 58	ict No: 63			Ca	ble	P	erc	us	sio	n E	Вс	orel	nole	e L	.0(9			Bo	orehole BH0	No: 6
Contrac	ct:	Moygaddy								Eas	sting	:	69392	27.32	6		Date Star	ted:	20/07	/2021	
Locatio	n:	Maynooth, C	Co. Me	eath						Nor	thin	g:	73942	21.93	0		Date Complete	d:	20/07	/2021	
Client:		Sky Castle L	_td							Elev	vatio	on:	57.55				Drilled By	:	G. Ma	acken	
Engine	er:	OCSC								Bor Dia	eho mete	le er:	200m	m			Status:		FINA	_	
Depth	n (m)		S	Stratu	n Des	scripti	on			Lege	end	Level	(mOD))	San	nples	and Insitu	ı Test	S	Water	Backfill
Scale	Depth 0.20	TOPSOIL.										Scale	Depth 57.35	n De	pth	Туре	Re	esult		Suike	
0.5		Firm brown s cobble conte	sandy ent.	slight	ily gra	velly	silty C	LAY v	vith lov	N 2000	* 0.1 * 0.1 X 0.1	57.0 —									
10-													-	1	00	в	G	M57			
	1 40										X	56.5 -	56 15	1.	00	C	N=10 (1	,2/2,2	2,3,3)		
1.5	1.40	Stiff brown s cobble conte	andy s ent.	slightl	y grav	velly s	ilty Cl	_AY w	ith hig	h x x		56.0 —									
2.0												55.5 -	-	2.	00	В	GI	M58	5 G F)		
2.5											-0	55.0	-	Ζ.		C	N-20 (3)	,4/4,0	5,0,5)		
-	2.90									× • • • ×			54.65								
3.0		Very stiff blac low cobble c	ck slig ontent	ihtly s t.	andy	grave	elly silt	y CLA	Y with			54.5 -		3. 3.	00	B C	GI N:	M59 =50			
3.5 _										0 0 0 0 0	201×101×	54.0 -	-				(6,8/9,1	12,14	,15)		
4.0												53.5 -	-	4.	00	В	GI	M60			
											<pre></pre>	-	-	4.	00	С	50 (9,1 210	12/50)mm)	for		
4.5	4.70	Obstruction -	- poss	ible b	oulde	ers.						53.0 —	52.85	4	80	С	50 (25 fo	r		
5.0	4.80	~	E	nd of E	lorehole	e at 4.80	Dm					52.5 -	52.75			Ū	5mm/50	for 5	imm)		
5.5												52.0 —	-								
60-												-	-								
0.0												51.5 -	-								
6.5												51.0 —	-								
7.0												50.5 -	-								
7.5 —												50.0	-								
												50.0	-								
8.0												49.5 -	-								
8.5 _												49.0 —	-								
9.0												48.5 -	-								
													-								
9.5 -												48.0	-								
								L. 5									<u> </u>				
a		Chiselling From: To:	g: Time: S	VVat Strike:	er Stri Rose:	Kes: Depth Sealed	Wa Date:	ter De Hole Depth:	Water Depth:	In: From:	stalla To	ation: : Pip	e: From:	Back To:	till: Type	e: B	Rema lorehole term	arks: iinated	due	Legend: B: Bulk D: Disturb	ed
(Second		4.70 4.80 (01:30				14/07	4.80	Dry				0.00	4.80	Arisin	igs to	o obstruction.			U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	irbed onmental PT oon SPT

Contra	ict No: 63				Ca	ble	e P	erc	us	sio	n I	Bc	ore	nol	e I	Lo	g		Bo	orehole	No: 7
Contrac	ct:	Moygad	dy								Eas	ting	:	6942	41.2	70		Date Started:	19/07	/2021	
Locatio	n:	Maynoo	th, C	o. M	eath						Nor	thin	g:	7394	11.79	96		Date Completed:	19/07	/2021	
Client:		Sky Cas	stle L	.td							Elev	/atic	on:	58.99)			Drilled By:	G. Ma	acken	
Engine	er:	ocsc									Bor Dia	ehol mete	e er:	200m	m			Status:	FINA	_	
Depth	h (m)				Stratu	m De	scripti	on			Leg	end	Level	(mOD)	Sa	mples	and Insitu Tes	sts	Water	Backfill
Scale	Depth	TOPSO											Scale	Dept	h D	epth	Туре	Result		Strike	
0.5	0.20	Firm bro	wn s onte	sandy ent.	/ sligh	tly gra	velly	silty C	LAY w	ith lov			58.5 -	58.79)						
1.0											20 20 20 20 20 20		58.0 -		1	.00	B	GM53	3 3 3)		
1.5 —											8	* 0 - 1 * 0 - 1 * 0 - 1	57.5 -			.00	C	IN-II (1,2/2,	3,3,3)		
20	1.60	Firm bro high cob	wn s oble d	sandy conte	/ sligh ent.	tly gra	velly	silty C	LAY w	/ith			57 0	57.39) 	00	в	CM54			
2.0													57.0	-	2	2.00	С	N=13 (2,3/3,	4,3,3)		
2.5 —	2.60	Very stif	fblad	ck sli	ghtly	sandy	grave	lly silt	y CLA	Y with	x_0	,	56.5 -	56.39	9						
3.0		IOW CODI		onter	11.							× • • • • • • • • • • • • • • • • • • •	56.0 —		3 3	5.00 5.00	B C	GM55 N=50 (8,8/5	50 for		
3.5 —											20 20 20 20 20 20		55.5 -	-				255mm)		
4.0													55.0 -	-	4	.00	В	GM56	o (
4.5 -	4.40 4.50	Obstruc	tion -	- pos	sible I End of	ooulde Borehole	e rs. e at 4.50)m					54.5 -	54.59 54.49	4	.00	c	50 (11,11/5 200mm 50 (25 fc 5mm/50 for	0 for) or 0mm)		
5.0													54.0 —	-							
5.5 _													53.5 -								
6.0													53.0 -								
6.5 —													52.5 -								
													50.0	-							
7.0													52.0 -								
7.5 — — —													51.5 -								
8.0													51.0 -								
8.5 —													50.5 -	-							
9.0													50.0 —								
9.5 —													49.5 -	-							
			all:		1.47	tor OL.	ka-:	14/		ail		ot - ''	-			slef:U		Demost		Logand	
a		From: 1	o:	Time:	vva Strike:	Rose:	Depth Sealed	Date:	Hole Depth:	Water Depth:	From:		: Pip	e: From:	То:		be: B	Remarks: orehole terminate	d due	B: Bulk D: Disturb	ed
S		1.70 1 4.40 4	.90 (0 .50 (0	00:45 01:30	1.90	1.70	2.10	13/07	4.50	Dry				0.00	4.50	Arisi	ings to	o obstruction.		U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	irbed onmental PT oon SPT

Contra	ict No: 63	Cable Percussio	n E	30 1	reł	nole	e Lo	g		Bo	orehole BH0	No: B
Contrac	ct:	Moygaddy	East	ing:		69433	1.307		Date Started:	16/07	/2021	
Locatio	n:	Maynooth, Co. Meath	North	hing:		73969	1.333		Date Completed:	16/07	/2021	
Client:		Sky Castle Ltd	Eleva	ation	1:	61.30			Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Bore Dian	hole	:	200mr	n		Status:	FINA	L	
Depth	ר (m)	Stratum Description	Lege	nd_L	evel	(mOD)	S	amples	and Insitu Tes	ts	Water	Backfill
Scale	Depth	TOPSOIL		S	Scale	Depth	Depth	і Туре	e Result		Strike	
0.5	0.40	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		6	61.0 — 	60.90						
1.0 — 			1 0 × 0 ×		60.5 — — — —		1.00 1.00	B C	GM48 N=11 (1,1/2,	2,3,4)		
1.5					0.00 							
2.0	1.70	Stiff brown sandy slightly gravelly silty CLAY with high cobble content.	α α		59.5 — 	59.60	2.00	в	GM49			
2.5 —					59.0 — –		2.00	C	N=19 (3,3/4,	6,5,4)		
30-	2.90	Very stiff black slightly sandy gravelly silty CLAY with			58.5 — 	58.40	3.00	B	GM50			
		low cobble content.			58.0 — 		3.00	C	N=35 (5,6/8,8,10),9)		
3.5 -					57.5 —							
4.0					 57.0		4.00 4.00	C B	GM51 50 (10,11/5 225mm	0 for)		
4.5					- - 56.5 —					,		
5.0					- - 56.0 —		5.00 5.00	B C	GM52 50 (25 fc	or V for		
5.5 -	5.70	Obstruction - possible boulders	0 20 20 20		55 5 _	55.60	5 80		100mm))		
6.0	5.80	End of Borehole at 5.80m			55.5	55.50	5.80		5mm/50 for	5 5mm)		
6.5					55.0 — - - -							
7.0				Ę	54.5 — - -							
7.5				Ę	54.0 — - -							
8.0				5	53.5 — - - -							
8.5				Ę	53.0 —							
9.0				ŧ	52.5 — 							
9.5				5	52.0 —							
				Ę	51.5 — 							
		Chiselling: Water Strikes: Water Details:	Inst	tallati	ion [.]		Backfill		Remarks		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: Operation 2.80 3.00 00:45 12/07 5.80 Dry Dry 5.70 5.80 01:30 12/07 5.80 Dry Dry	From:	To:	Pipe	: From: 0.00	To: T 5.80 Ar	ype: E isings to	Borehole terminated	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental

Contra 580	ct No: 63	Cable Percussion	n Bo	oreł	nole	Lo	g		B	orehole BH0	No: 9
Contrac	ot:	Moygaddy	Easting	:	694598	8.661		Date Started:	14/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northin	g:	739652	2.377		Date Completed:	14/07	/2021	
Client:		Sky Castle Ltd	Elevatio	on:	61.68			Drilled By:	G. Ma	acken	
Engine	er:	OCSC	Boreho Diamet	le er:	200mm	ı		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend.	Level	(mOD)	Sar	nples	and Insitu Tes	sts	Water Strike	Backfill
Scale		TOPSOIL.		Scale		Depth	туре	Result			
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		61.0	61.48						
1.0						1.00	В	GM41			
				60.5		1.00	С	N=10 (2,2/2,	3,2,3)		
-	1.80	Stiff brown sandy slightly gravelly silty CLAY with high		60.0	59.88						
2.0		cobble content.		59.5 —		2.00 2.00	B C	GM42 N=21 (3,3/4,	5,5,7)		
2.5 -	2.70				58 98						
3.0		Very stiff black slightly sandy gravelly silty CLAY with low cobble content.				3.00	В	GM43			
3.5 —				58.5 — - -		3.00	C	N=39 (4,7/9,9,11	,10)		
				58.0		4.00	Б	CM44			
4.0				57.5 — 		4.00	C	50 (6,9/50 200mm	for)		
4.5				57.0					,		
5.0				- - 56.5 -		5.00 5.00	B C	GM45 50 (9,12/50) for		
5.5	5.30 5.40	Obstruction - possible boulders. End of Borehole at 5.40m	0.0		56.38 56.28	5.40	С	100mm 50 (25 fc) or		
6.0								5mm/50 for	5mm)		
6.5 -				55.5 — - -							
				55.0							
7.0				54.5 _							
7.5 — — —				54.0 —							
8.0				- - 53.5 —							
8.5 —											
9.0											
9.5				52.5 — - -							
				52.0 —							
		Chiselling: Water Strikes: Water Details:	Install	ation:	E	Backfill:		Remarks:		Legend:	
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: F 5.30 5.40 01:30 01:30 08/07 5.40 Dry	From: To	o: Pipe	: From: 7 0.00 5	To: Typ 5.40 Arisin	ngs to	orehole terminated	d due	D: Disturb D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed urbed onmental PT oon SPT

Contra 58	ict No: 63	Cable Percussion	n B	orel	nole	Log	J		Bo	orehole BH1	No:)
Contrac	ot:	Moygaddy	Eastin	g:	69444	6.855		Date Started:	15/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northi	ng:	73946	6.694		Date Completed:	15/07	/2021	
Client:		Sky Castle Ltd	Elevat	ion:	59.25			Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Boreh Diame	ole ter:	200mn	n		Status:	FINA	_	
Dept	h (m)	Stratum Description	Legend	Level	(mOD)	Sam	ples	and Insitu Tes	ts	Water Strike	Backfill
Scale _	Depth	TOPSOIL.		Scale	Depth	Depth	Туре	Result		Ounce	
0.5	0.30	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		59.0	58.95						
1.0				58.0 -	-	1.00 1.00	B C	GM46 N=11 (2,2/3,	3,3,2)		
1.5 —	1.50	Stiff brown sandy slightly gravelly silty CLAY with high cobble content		57.5 -	57.75						
2.0				57.0 —	-	2.00 2.00	B C	GM47 N=20 (5,4/5,	5,4,6)		
2.5 _	2.40	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.			56.85						
3.0	3.00	Obstruction - possible boulders. End of Borehole at 3.00m		56.0	56.25	3.00	С	50 (25 fc 5mm/50 for	or 0mm)		
3.5 -				- - - 55.5 -	-						
4.0				55.0	-						
4.5 _				- - 54.5 -	-						
5.0 —				54.0	-						
5.5 _					-						
6.0				53.0	-						
6.5				- - - 52.5 —	-						
7.0				52.0	-						
7.5 —				- - - 51.5 -	-						
8.0				51.0	-						
8.5 _				- - - 50.5 -	-						
9.0				50.0	-						
9.5 _				49.5 -	-						
		Chiselling: Water Strikes: Water Details:	Insta	llation:		Backfill:		Remarks:		Legend: B: Bulk	
		From: To: Time: Strike: Rose: Deptile Date: Prove peptile Water of the peptile 2.80 3.00 02:00 09/07 3.00 Dry	From:	Γο: Pipe	e: From: 0.00 \$	To: Type 3.00 Arising	: B _{IS} to	orehole terminate o obstruction.	d due	D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed irbed onmental PT

Contra 58	ict No: 63	Cable Percussion	n B	orel	nole	Log		B	orehole BH1'	No: 1
Contrac	ct:	Moygaddy	Eastin	g:	694790).229	Date Started:	13/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northi	ng:	739307	7.430	Date Completed:	13/07	/2021	
Client:		Sky Castle Ltd	Elevat	ion:	59.88		Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Boreh Diame	ole ter:	200mm	ı	Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sample	es and Insitu Tes	sts	Water	Backfill
Scale	Depth	TOPSOIL		Scale	Depth	Depth Ty	pe Result		Strike	
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.			59.68					
1.0				역 59.0 — -	-	1.00 E	GM36	2 1 2)		
1.5			0 × 0		-	1.00 C	, IN-13 (2,2/3,	3,4,3)		
	1.70	Stiff brown sandy slightly gravelly silty CLAY with high	<u>x</u>	- - - - - - - - - - - -	58.18					
2.0		cobble content.			-	2.00 E 2.00 C	GM37 N=21 (4,4/5,	5,6,5)		
2.5				- 57.5 –	-					
3.0	2.90	Very stiff black slightly sandy gravelly silty CLAY with	α • × • α	57.0	56.98	3.00 E	GM38			
		low cobble content.			-	3.00 C	N=43 (5,5/9,10,1	1,13)		
3.5 —			X 0 0 X 0	 	-					
4.0			x	56.0 -		4.00 E	GM39	50 for		
4.5				55.5 - - -	-		275mm)		
5.0				55.0 —		5.00 E	GM40	0 for		
5.5 -				54.5 –			175mm)		
6.0	5.70 5.80	Obstruction - possible boulders. End of Borehole at 5.80m		54.0 -	54.18 54.08	5.80 C	50 (25 fc 5mm/50 for	or 5mm)		
6.5 -				53.5 -	-					
7.0				53.0 -						
7.5 —				52.5	-					
8.0				52.0 -	-					
85 -				51.5 -						
				51.0	-					
				50.5 -						
9.5 _				-						
				50.0	-					
		Chiselling: Water Strikes: Water Details:	Insta	llation:		Backfill:	Remarks:		Legend: B: Bulk	
	ľ)	From: To: Time: Strike: Rose: Sected Date: Depth: Depth: <thdepth:< th=""></thdepth:<>	-rom:	IO: Pipe	e: From: 5	Io: Type: 5.80 Arisings	borehole terminate to obstruction.	a due	D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental

Contra 580	ct No: 63	Cable Percussion	n B	orel	nole	Lo	g		Bo	orehole BH1	No: 2
Contrac	ct:	Moygaddy	Eastin	g:	694615	5.966		Date Started:	12/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northi	ng:	739002	2.198		Date Completed:	12/07	/2021	
Client:		Sky Castle Ltd	Elevat	ion:	56.86			Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Boreh Diame	ole eter:	200mm	า		Status:	FINA	L	
Depth	ר (m)	Stratum Description	Legen	Level	(mOD)	Sa	mples	and Insitu Tes	ts	Water	Backfill
Scale _	Depth	TOPSOIL		Scale	Depth	Depth	Туре	Result		Strike	
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.			56.66						
- - 1.0				56.0 —	-	1.00	В	GM30	2 2 2 2		
1.5 —	1.30	Stiff brown sandy slightly gravelly silty CLAY with high cobble content.			55.56	1.00	C	N=10 (1,1/3,	3,2,2)		
2.0				55.0 - - -	-	2.00	В	GM31	655)		
2.5 —				54.5 - - -	-	2.00	0	10-21 (0,0/0,	0,0,0)		
3.0	3 20			전 54.0 — - - - -	53.66	3.00 3.00	B C	GM32 N=47			
3.5 —	0.20	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.		বিশি 53.5 – - - -			-	(5,4/9,9,14	,15)		
4.0				53.0 - 	-	4.00 4.00	B C	GM33 50 (9,13/50) for		
4.5 -				बार्था 52.5 - -	-			175mm)		
5.0				52.0 —	-	5.00 5.00	B C	GM34 N=50 (7,9/5	i0 for		
5.5				× 51.5 – - - - -	-			250mm)		
6.0	6.30			전 51.0 — - - - - - - - - - - - - - - - - - - -	50.56	6.00 6.00	B C	GM35 50 (10,13/5	0 for		
6.5 -	6.40	Obstruction - possible boulders. End of Borehole at 6.40m		50.5	50.46	6.40	С	50 (25 fc 5mm/50 for 0) or Omm)		
7.0				50.0	-						
7.5 -				49.0	-						
8.0				48.5 -	-						
8.5				48.0	-						
9.0				47.5 -	-						
9.5				47.0	-						
					1						
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Mater Depth: F 6.30 6.40 01:30 Image: Comparison of the comparison o	Insta From:	Ilation: To: Pipe	E: From:	Backfill: To: Typ 5.40 Arisi	pe: B ings to	Remarks: orehole terminated o obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental

Contra 58	ict No: 63	Cable Percussion	n B	orel	nole	e Log	g		Bo	orehole BH1	No: 3
Contrac	ct:	Moygaddy	Eastir	g:	69465	9.374		Date Started:	08/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northi	ng:	73876	3.773		Date Completed:	08/07	/2021	
Client:		Sky Castle Ltd	Eleva	ion:	52.09			Drilled By:	G. Ma	acken	
Engine	er:	ocsc	Boreh Diame	ole eter:	200mr	n		Status:	FINA	L	
Dept	า (m)	Stratum Description	Legen	Level	(mOD)	Sar	nples	and Insitu Tes	sts	Water	Backfill
Scale	Depth	TOPSOIL		Scale 52.0	Depth	Depth	Туре	Result		Suike	
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		 51.5 −	51.89						
1.0						1.00	В	GM18			
				<u>भूर</u> ाका		1.00	С	N=9 (2,2/2,7	1,3,3)		
	1.70	Firm brown sandy slightly gravelly silty CLAY with	<u>x _ 0,</u>	× 50.5 – 	50.39						
2.0		high cobble content.	<u>x o</u>	50.0 —		2.00 2.00	B C	GM19 N=14 (4,4/3,	3,4,4)		
2.5	2.50	Very stiff black slightly sandy gravelly silty CLAY with		49.5 –	49.59						
3.0				ू 	- - -	3.00 3.00	B C	GM20 N=45			
3.5 —			80×0	48.5 –				(8,8/11,11,1	0,13)		
4.0				48.0 —	- - -	4.00	В	GM21			
4.5				47.5 –		4.00	C	(7,9/9,10,1	1,11)		
5.0 —			x x x x x x x x x x x x x x x x x x x	्राङ्ग 		5.00	в	GM22			
5.5					-	5.00	С	50 (8,10/50 210mm	0 for)		
				46.5 – 	- - -	0.00	P	CMOD			
0.0	6.10 6.20	Obstruction - possible boulders. End of Borehole at 6.20m		46.0	45.99 45.89	6.00 6.20	С С С	50 (26 fo 85mm/50	or for		
6.5				45.5 -				10mm) 50 (25 fo 5mm/50 for) or Omm)		
7.0				45.0	-				onninj		
7.5 —				44.5 -	- - - -						
8.0				44.0							
8.5 —				43.5	-						
9.0				43.0							
9.5				42.5 -							
				-							
		Chiselling: Water Strikes: Water Details:	 Insta	llation:		Backfill:		Remarks:		Legend:	
	I)	From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water Depth:<	From:	To: Pipe	e: From: 0.00	To: Typ 5.20 Arisir	e: B ngs to	orehole terminate	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed irbed onmental

Contract N 5863	No:	Cable Percussion	n Bo	oreł	nole	Log			Bo	orehole BH14	No: 1
Contract:		Moygaddy	Easting	:	694546	6.422	I	Date Started:	06/07	/2021	
Location:		Maynooth, Co. Meath	Northin	g:	738784	1.570		Date Completed:	06/07	/2021	
Client:		Sky Castle Ltd	Elevatio	on:	53.46			Drilled By:	G. Ma	acken	
Engineer:		ocsc	Boreho Diamet	le er:	200mm	1	;	Status:	FINA	L	
Depth (m	n)	Stratum Description	Legend	Level	(mOD)	Samp	oles	and Insitu Tes	ts	Water Strike	Backfill
Scale Deg 0.5 0.2 0.5 0.2 1.0 1.10 1.5 2.0 2.5 2.1 3.0 3.2 3.5 3.2 3.5 6.0 5.5 6.2 6.0 6.2 6.5 6.3 7.0 7.5 8.0 8.5 8.5 3.5	20 10 20 20 20 30	TOPSOIL. Soft brown sandy slightly gravelly silty CLAY with low cobble content. Soft brown sandy slightly gravelly silty CLAY with high cobble content. Very stiff black slightly sandy gravelly silty CLAY with low cobble content. Very stiff black slightly sandy gravelly silty CLAY with low cobble content. Obstruction - possible boulders. End of Borehole at 6.30m		Scale 53.0 52.5 52.0 51.5 51.6 50.6 49.0 49.0 44.5 44.0 44.5 44.5	Depth 53.26 51.36 50.26 47.26 47.16	Depth T 1.00 1 2.00 2 3.00 1 3.00 1 4.00 1 5.00 1 6.00 1 6.500 1 6.500 1	BC BC BC BC C	GM07 N=7 (1,1/2,1 GM08 N=7 (2,1/2,1 GM09 N=48 (2,3/9,11,13 GM10 50 (9,9/50 225mm GM11 50 (7,10/50 210mm GM12 50 (8,10/50 175mm 50 (25 fc 5mm/50 for 5	I,3,1) I,1,3) for) for) for) for) for) for	Strike	
9.5				44.0							
)	Chiselling:Water Strikes:Water Details:From:To:Time:Strike:Rose:Depth:Date:Hole Depth:Water Depth:F1.701.8000:453.403.103.7030/066.30DryF6.206.3001:30010000000	Install From: To	ation: b: Pipe	E E From: 1 0.00 6	Backfill: Fo: Type: .30 Arisings	Bo s to	Remarks: prehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Envirc W: Water C: Cone S S: Split sp	ed Irbed onmental PT oon SPT

Contra 58	ct No: 63	Cable Percussion	n Bo	oreł	nole	Log	g		Bo	orehole BH1	No: 5
Contrac	ot:	Moygaddy	Easting	J:	694458	8.907		Date Started:	09/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northin	g:	738814	.666		Date Completed:	09/07	/2021	
Client:		Sky Castle Ltd	Elevatio	on:	54.44			Drilled By:	G. Ma	acken	
Engine	er:	OCSC	Boreho Diamet	le er:	200mm	ı		Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sar	nples	and Insitu Tes	ts	Water	Backfill
Scale	Depth	TORSOIL		Scale	Depth	Depth	Туре	Result		Ounce	
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		54.0 —	54.24						
1.0				53.5 — 		1.00 1.00	B C	GM24 N=10 (2,2/3,	2,2,3)		
1.5 _	1.80			53.0	52.64						
2.0	1.00	Firm brown sandy slightly gravelly silty CLAY with high cobble content.		52.5 — 	02.04	2.00 2.00	B C	GM25 N=14 (3,2/4,	3,3,4)		
2.5 _	2.30	Very stiff black slightly sandy gravelly silty CLAY with low cobble content.		52.0	52.14						
3.0				51.5 — - -	-	3.00 3.00	B C	GM26 N=50 (8.7/5	0 for		
3.5 —				51.0 — 				255mm)		
4.0			XX 0 0	50.5 — 		4.00	B	GM27	0 for		
4.5			1 2 2 2 2 2 2 2 2 2 2 2 2 2	50.0 —		1.00	0	210mm)		
5.0				- - 49.5 — -		5.00	В	GM28	0 for		
5.5				49.0 —		5.00	C	190mm)		
6.0				- - 48.5 — -		6.00	В	GM29	0 fee		
6.5				48.0		0.00	C	140mm)		
7.0	6.70 6.80	Obstruction - possible boulders. End of Borehole at 6.80m		47.5 –	47.74	6.80	С	50 (25 fc 5mm/50 for (or Omm)		
7.5				47.0							
8.0				- - 46.5 —							
8.5				46.0							
9.0				- - 45.5 —							
9.5				- - 45.0 —							
				-							
		Chiselling: Water Strikes: Water Details:	Inetall	ation:		Backfill		Remarke		Leaend.	
		From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water WaterHole Depth:Water WaterHole Depth:Water Depth:Hole Depth:Hole Depth:Water Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth:Hole Depth: <td>From: To</td> <td>p: Pipe</td> <td>e: From: 1 0.00 6</td> <td>To: Typ .80 Arisir</td> <td>e: B ngs to</td> <td>orehole terminated</td> <td>d due</td> <td>B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S</td> <td>ed urbed onmental SPT</td>	From: To	p: Pipe	e: From: 1 0.00 6	To: Typ .80 Arisir	e: B ngs to	orehole terminated	d due	B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S	ed urbed onmental SPT

Contra 580	ct No: 63		B	orehole BH1	No: 6					
Contrac	et:	Moygaddy	Easting	J:	693655	5.329	Date Started:	01/07	/2021	
Locatio	n:	Maynooth, Co. Meath	Northin	g:	739258	8.288	Date Completed:	01/07	/2021	
Client:		Sky Castle Ltd	Elevati	on:	49.53		Drilled By:	G. Ma	acken	
Enginee	er:	ocsc	Boreho Diamet	le er:	200mm	1	Status:	FINA	L	
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Samp	les and Insitu Tes	sts	Water	Backfill
0.5 –	0.20	TOPSOIL. Firm brown sandy slightly gravelly silty CLAY with low cobble content.		Scale 	49.33		ype Result			
1.0				48.5		1.00 1.00	B GM80 C N=9 (1,2/2,3	3,2,2)		
2.0	1.80	Stiff brown sandy slightly gravelly silty CLAY with high cobble content.		47.5	47.73	2.00 2.00	B GM81 C N=16 (2,3/3,	5,4,4)		
3.0	2.50	Stiff becoming very stiff black slightly sandy gravelly silty CLAY with low cobble content.		47.0	47.03	3.00 3.00	B GM82 C N=24 (4,4/5,	6,6,7)		
4.0				46.0 — 45.5 — 45.0 —		4.00 4.00	B GM83 C N=34 (5,6/6,8,9	,11)		
5.0				44.5		5.00 5.00	B GM84 C N=48 (5,8/11,11,1	2,14)		
6.0			24 - 1 24 - 1 24 - 1 24 - 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	43.5 - 43.0		6.00 6.00	B GM85 C N=50 (7,8/5 275mm	50 for 1)		
7.0	6.70 6.80	Obstruction - possible boulders. End of Borehole at 6.80m		42.5 — 	42.83 42.73	6.80	C 50 (25 fo 5mm/50 for	or 5mm)		
7.5				42.0 — - - 41.5 —						
8.5				41.0						
9.0				40.5 — 						
9.5				40.0						
		Chiselling:Water Strikes:Water Details:From:To:Time:Strike:Rose:Depth SealedDate:Hole Depth:Water Depth:Hole Depth:2.802.9001:003.603.404.0021/076.80Dry6.706.8001:3001:000.000.000.000.00	Remarks: Borehole terminate to obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistu ES: Enviro W: Water C: Cone S S: Split sp	ed urbed onmental SPT toon SPT				

Contra 580	ct No: 63	No: Cable Percussion Borehole Log										
Contrac	ot:	Moygaddy	Easting	:	694518	8.865		Date Started:	05/07	/2021		
Locatio	n:	Maynooth, Co. Meath	Northin	g:	738836	6.591		Date Completed:	05/07	/2021		
Client:		Sky Castle Ltd	Elevatio	on:	54.89			Drilled By:	G. Ma	acken		
Engine	er:	OCSC	Boreho Diamet	le er:	200mm	1		Status:	FINA	L		
Depth	n (m)	Stratum Description	Legend	Level	(mOD)	Sar	nples	and Insitu Tes	ts	Water Strike	Backfill	
Scale		TOPSOIL.		Scale	54 60	Depth	туре	Result				
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY.	×× ××	54.5 — 								
1.0			×× ××	54.0		1.00	В	GM01				
1.5				53.5 –		1.00	С	N=8 (1,2/2,1	1,2,3)			
1.0												
2.0	2.20	Stiff brown sandy slightly gravelly silty CLAY with low	×		52.69	2.00 2.00	B C	GM02 N=14 (2,5/3,	3,4,4)			
2.5 _		cobble content.		52.5 — 								
3.0				52.0		3.00	В	GM03				
3.5 —			0 × 0	51.5 —		3.00	С	N=16 (3,3/3,	4,5,4)			
	3.80	Very stiff black slightly sandy gravelly silty CLAY with	x 		51.09	4.00	_	0.404				
4.0		low cobble content.				4.00 4.00	C	GM04 N=47 (8.6/9.10.12	3 15)			
4.5 -				50.5 — - -				(0,0/0,10,10	5,10)			
5.0			x _ 0 _ X	50.0 —	-	5.00	B	GM05	32)			
5.5				49.5 —		5.00	C	50 (7,15/10)	,52,,)			
60-				49.0		6.00	в	GM06				
0.0				- - 48.5		6.00	C	50 (25 fc 100mm/50	or) for			
6.5	6.50	Obstruction - possible boulders. End of Borehole at 6.50m			48.39	6.50	С	20mm) 50 (25 fc	or		\$\$772\$\$772\$	
7.0				48.0				5mm/50 for	5mm)			
7.5				47.5 -								
8.0				47.0								
85				46.5								
-				46.0								
9.0												
9.5 —				45.5								
				45.0 —								
		Chiselling: Water Strikes: Water Details: From: To: Time: Strike: Rose: Depth Seeled Date: Hole Depth: Water Depth: 3.60 3.80 00:45 3.60 3.40 3.90 29/06 6.50 Dry 5.50 5.70 01:00 Image: Strike in the strike	e: B ngs to	Remarks: orehole terminated obstruction.	d due	Legend: B: Bulk D: Disturb U: Undistr ES: Envirr W: Water C: Cone S S: Split sp	ed urbed onmental SPT boon SPT					

Contra	ict No: 63	Cable Percussion Borehole Log											
Contrac	ct:	Moygaddy	Eastir	ıg:	69456	2.423		Date Started:	07/07	/2021			
Locatio	n:	Maynooth, Co. Meath	North	ng:	73877	0.148		Date Completed:	07/07	/2021			
Client:		Sky Castle Ltd	Eleva	tion:	52.93			Drilled By:	G. Ma	acken			
Engine	er:	ocsc	Boreh Diame	ole eter:	200m	m		Status:	FINA	L			
Depth	h (m)	Stratum Description	Legen	Level	(mOD)	Sa	mples	and Insitu Tes	sts	Water	Backfill		
Scale	Depth	TOPSOIL		Scale	Depth	Depth	Туре	e Result		Strike			
0.5	0.20	Firm brown sandy slightly gravelly silty CLAY with low cobble content.		52.5 –	52.73								
1.0			0 × 0	52.0 —	-	1.00	В	GM13					
15 -						1.00	С	N=9 (1,1/3,2	2,2,2)				
-	1.80				51.13								
2.0		Firm brown sandy slightly gravelly silty CLAY with high cobble content.	x <u>0</u>	51.0 — 	-	2.00 2.00	B C	GM14 N=13 (3,3/2,	3,4,4)				
2.5 —	2.50	Very stiff black slightly sandy gravelly silty CLAY with		50.5 – - -	50.43								
3.0				50.0 —	-	3.00	B	GM15 N=50 (8 8/5	50 for				
3.5 —				× • • • • • • • • • • • • • • • • • • •		0.00		250mm)				
4.0				× 49.0 –	-	4.00	В	GM16					
45				48.5 –	-	4.00	С	N=50 (8,9/5 230mm	50 for)				
				48.0 —	-		_						
5.0						5.00	СВ	50 (10,13/5 135mm	0 for)				
5.5	5.70 5.80	Obstruction - possible boulders.			47.23	5.80	С	50 (25 fe	or				
6.0	0.00	End of Borehole at 5.80m		47.0				5mm/50 for	0mm)				
6.5				46.5 -	-								
7.0				46.0	-								
7.5 —				45.5 -	-								
8.0				45.0									
8.5 —				44.5 -	-								
9.0				44.0	-								
9.5				43.5	-								
				43.0									
		Chiselling: Water Strikes: Water Details:	 Insta	Illation:		Backfill:		Remarks:		Legend:			
		From: To: Time: Strike: Rose: Depth Sealed Date: Hole Depth: Water Depth: 4.70 4.80 01:00 01/07 5.80 Dry 5.70 5.80 01:30 01/07 5.80 Dry	From:	To: Pipe	e: From: 0.00	To: Tyj 5.80 Aris	pe: E ings to	Borehole terminate o obstruction.	d due	B: Bulk D: Disturb U: Undistr ES: Envir W: Water C: Cone S	ed urbed onmental		

Appendix 2 Rotary Corehole Logs and Photographs

Contra 58	act No 63	Rotary Core		Core F	ehole RC04	No:						
Contrac	ct:	Moygaddy	Eastir	ng:	6	93637.963	Date	e Start	ed:	19/07/2	021	
Locatio	n:	Maynooth, Co. Meath	North	ing:	7	739436.766	Date Corr	e nplete	d:	19/07/2	021	
Client:		Sky Castle Ltd	Eleva	tion:	5	56.84	Drille	ed By:	:	MEDL		
Engine	er:	OCSC	Rig T	/pe:	s	Sondeq	Stat	us:		FINAL		
Depth ((m)	Stratum Description	Legend	Leve (mOI	 el D)	Samples			Rock	Indices		Backfill
Scale D	epth	Oratum Description	Logona	Scale D)ept	th		TCR/%	SCR/9	% RQD/%	Fl/m	Dackiii
0.5	c	ELAY with cobbles.		56.5								
1.0				56.0								
1.5				55.5 — — —								
2.0				55.0								
				- - 54.5 -								
2.5												
3.0												
3.5				53.5								
40-			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	53.0								
				52.5								
4.5 -												
5.0			0 ×0 ×0	52.0								
5.5				51.5 — — —								
60				51.0								
			0 × 0 × 0	- - 50.5 -								
6.5 - 6	6.70 s	trong to very strong light grey fine grained argillaceous		- 5	50.14	4						
7.0	L ¢	IMESTONE interbedded with moderately strong dark grey alcareous MUDSTONE with occasional fossils and calcite		50.0		6 70 - 7 70		96	57	12		
7.5	Ψ	eins (2mm thick). Fresh to slightly weathered. Discontinuities - smooth to rough, planar to slightly undulating, tight to open, sub-horizontal and 45° dip, clean with occasional grey staining and occasional		49.5		0.10 1.10		00	07	12	14	
8.0				49.0							14	
				48.5		7.70 - 8.70		97	77	36		
8.5 — — —	1	Discontinuities - smooth to rough, planar to undulating, tight to open, sub- horizontal and sub-vertical dip, clean with occasional grey staining and		48.0								
9.0						8.70 - 9.70		97	68	0	19	
9.5				47.5 —	_							
	9.70 ⊥	End of Corehole at 9.70m		47.0 - 4	17.14	4						
		Installation: Backfill: F	Remar	ks:								
		From: To: Pipe Type: From: To: Type: 0.00 9.70 Bentonite										

Contract 5863	: No: 3	Rotary Corehole Log										ehole RCO	No: 5
Contract:		Moygaddy	Eastir	ng:		693	3935.222	Date	Start	ed:	15/07/2	021	
Location:		Maynooth, Co. Meath	North	ing:		739	9548.071	Date Com	e Iplete	d:	15/07/2	021	
Client:		Sky Castle Ltd	Eleva	tion:		58.0	60	Drille	ed By:	:	MEDL		
Engineer:	:	ocsc	Rig T	ype:		Sor	ndeq	Stati	ls:		FINAL		
Depth (m	1)	Stratum Description	Legend	Le (m(vel DD)		Samples			Rock	Indices		Backfill
Scale Dep	oth Op	en hole drilling - driller reports returns of sandy gravelly silty	<u>x ^ </u>	Scale	De	pth			TCR/%	SCR/9	% RQD/%	Fl/m	
0.5 —	CL	AY with coddles.											
				58.0									
1.0				57.5 —									
1.5				57.0									
-													
2.0				56.5 —									
25 -				-									
				56.0									
3.0			<u>x</u> °×°										
-													
3.5 —				55.0									
40-				-									
			α α	54.5 —									
4.5				54.0 —									
-				-									
5.0				53.5 — 									
5.5													
5.70	0 \$tr	ong to very strong light grey fine grained argillaceous		53.0	52.	.90 -							
6.0	LIN cal	/IESTONE interbedded with moderately strong dark grey careous MUDSTONE with occasional fossils, pyrite crystals										11	
	and	d calcite veins (2mm thick). Fresh to slightly weathered.		_			5.70 - 6.70		96	83	28		
6.5	C C S	lean with occasional grey staining. Discontinuities - smooth to rough, planar to slightly undulating, tight to open, ub-horizontal and sub-vertical dio. clean with occasional grey staining.		52.0									
7.0		<u></u>										14	
				51.5 —			6.70 - 7.70		96	52	16	14	
7.5 —				51.0									
80		Discontinuities - smooth to rough, planar, tight to open, sub-horizontal, ccasional sub-vertical dip, clean with occasional grey staining.		-									
0.0				50.5 —			7.70 - 8.70		92	88	22	11	
8.5 _													
- 8.70	0	End of Corehole at 8.70m		-	49.	.90 -							
9.0				49.5									
9.5				-									
				49.0									
						+							
		Installation: Backfill: F	Remar	ks:								I	
(\$		0.00 8.70 Bentonite											

Contract No: 5863	Rotary Core			Cor F	ehole RC06	No: 5						
Contract:	Moygaddy	Eastii	ng:		694	4016.492	Date	Starte	ed:	15/07/2	021	
Location:	Maynooth, Co. Meath	North	ing:		73	9390.864	Date Com	e ipleted	I:	15/07/2	021	
Client:	Sky Castle Ltd	Eleva	ition:		57.	.65	Drille	ed By:		MEDL		
Engineer:	ocsc	Rig T	ype:		So	ndeq	Statu	us:		FINAL		
Depth (m)	Stratum Description	Leaend	Le (m	vel OD))	Samples		F	Rock	Indices		Backfill
Scale Depth			Scale	De	pth	Campico		TCR/%	SCR/9	% RQD/%	FI/m	Daoran
0.5 1.0 1.5 2.0 3.0 4.0	LAY with cobbles.		57.5									
4.5 5.0 5.5 6.0	trong to very strong light grey fine grained argillaceous IMESTONE interbedded with moderately strong dark grey alcareous MUDSTONE with occasional fossils and calcite eins (3mm thick). Fresh to slightly weathered. Discontinuities - smooth to rough, planar to slightly undulating, tight to open, 10-20° and sub-vertical dip, clean with occasional grey staining and occasional clay infill.		53.5 	52.	.35	5.30 - 6.30		93	70	47	10	
6.5	Discontinuities - smooth to rough, planar, tight to open, 10-20° and sub- horizontal dip, clean with occasional grey staining, calcite crystals and occasional clay infill.			50	15	6.30 - 7.30		98	75	39	10	
	trong to very strong light grey fine grained argillaceous IMESTONE interbedded with moderately strong dark grey alcareous MUDSTONE with frequent pyrite crystals, ccasional fossils and calcite veins (3mm thick). Fresh to ightly weathered.		50.0	49.	.15	7.30 - 8.30		80	76	32	_	
8.5 9.0 9.5			49.0									
	Installation: Backfill: F	Remar	ks:	·								
	From: To: Pipe Type: From: To: Type: - 0.00 8.30 Bentonite											

Contr 58	ract No 863	Rotary Core		Cor F	ehole {C0 7	No: 7						
Contra	act:	Moygaddy	Eastii	ng:		694142.350	Date	e Start	ed:	14/07/2	2021	
Locati	on:	Maynooth, Co. Meath	North	ing:		739365.230	Date Con	ə npletec	d:	14/07/2	2021	
Client	:	Sky Castle Ltd	Eleva	ition:		57.84	Drill	ed By:		MEDL		
Engin	eer:	ocsc	Rig T	ype:		Sondeq	Stat	us:		FINAL		
Depth	n (m)	Stratum Description	Legend	Le (m0	vel CD)	Samples			Rock	Indices		Backfill
Scale	Depth	Open hole drilling - driller reports returns of sandy gravelly silty	<u></u>	Scale	De	pth		TCR/%	SCR/9	6 RQD/%	Fl/m	
		CLAY with cobbles.										
			<u>x</u>	57.0								
1.0 -				-								
-				 56.5								
1.5 —				-								
20-				56.0 — —								
2.0												
2.5 —				55.5 —								
-			<u>x ~ c</u>	55.0								
3.0 -												
-				<u>o'</u> 54.5								
3.5												
				54.0 —								
4.0				-								
				53.5 — -								
4.5												
5.0				53.0								
5.5	5 60			52.5 - 	52	24						
-	5.00	Strong to very strong light grey fine grained argillaceous LIMESTONE interbedded with moderately strong dark grey		52.0	52.							
6.0 -		alcareous MUDSTONE with occasional fossils and calcite				5.60 - 6.60		97	97	66	10	
		Discontinuities - smooth, occasionally rough, planar, tight to open, sub- horizontal occasional sub-vertical din clean with occasional grey staining		51.5 —							12	
6.5 —				-								
	-	Discontinuities - smooth to rough, planar to slightly undulating, tight to open, sub-horizontal and sub-vertical dip, clean with occasional grey staining and		51.0								
7.0 -		_occasional clay infill.				6.60 - 7.60		99	65	41	11	
7.5 —				50.5								
	-	Discontinuities - smooth to rough, planar, tight to open, sub-horizontal and sub- vertical dip, clean with occasional grey staining.										
8.0 -				50.0		7 60 - 8 60		90	75	53	8	
-				49.5 —		7.00 - 0.00		30	75	55	0	
8.5 _	8.60	End of Corobole at 8.60m		-	49	24						
				49.0								
9.0				-								
				48.5 —								
9.5 -				-								
			<u> </u>	48.0								
		Installation: Backfill: F	∣ Remar	ks:								
		From: To: Pipe Type: From: To: Type: -										
		0.00 8.60 Bentonite										
	E											

Contr 58	act No 363	Rotary Core		Cor F	ehole RC08	No: B						
Contra	act:	Moygaddy	Easti	ng:		694212.597	Date	e Start	ed:	16/07/2	2021	
Locatio	on:	Maynooth, Co. Meath	North	ing:		739630.304	Date Corr	e npleteo	d:	16/07/2	2021	
Client:	:	Sky Castle Ltd	Eleva	ition:		60.48	Drille	ed By:		MEDL		
Engine	eer:	OCSC	Rig T	ype:		Sondeq	Statu	us:		FINAL		
Depth	n (m)	Stratum Description	Legend	Le (m0	vel DD)) Samples			Rock	Indices		Backfill
Scale I	Depth	Open hole drilling - driller reports returns of sandy gravelly silty		Scale	De	epth		TCR/%	SCR/	% RQD/%	Fl/m	
	Ċ	CLAY with cobbles.	x	-								
0.5 —				60.0								
10-				- - 59.5 -								
			x	-								
1.5 _			0 0 0 0 0 0	59.0								
-				-								
2.0				58.5 —								
				-								
2.5 -				58.0 -								
3.0				 57.5 —								
				-								
3.5 _				57.0								
				-								
4.0				56.5 —								
45				56.0								
4.5			<u>x ^ c</u>	-								
5.0 —				55.5 —								
-				-								
5.5				55.0 —								
-			<u>x o × c</u>	-								
6.0				54.5 —								
6.5 -				 54.0 —								
-	6.60	Strong to very strong light grey fine grained argillaceous		-	53.	.88					Ni	
7.0	¢	alcareous MUDSTONE with frequent calcite veins (3mm		53.5 — -		6 60 - 7 60		98	63	23		
	l	hick). Fresh to slightly weathered. Discontinuities - non-intact.		-		0.00 7.00		00	00	20	11	
7.5 —		horizontal and sub-vertical dip, clean with occasional grey staining, calcite crystals and occasional clay infill.		53.0								
- -		Discontinuities - non-intact.		- 52.5							NI	
0.0	H	Discontinuities - smooth to rough, planar to slightly undulating, tight to open,		-		7.60 - 8.60		100	69	32		
8.5 —	 	sub-horizontal and sub-vertical dip, clean with occasional grey staining, calcite crystals and occasional clay infill.		52.0							13	
		Discontinuities - non-intact.									Ni	
9.0		Discontinuities - smooth to rough, planar to slightly undulating, tight to open, sub-horizontal and sub-vertical dip, clean with occasional grey staining, calcite crystals and occasional clay infil		51.5 —		8.60 - 9.60		98	75	21		
-	ſ			-							17	
9.5 —	9.60	End of Corehole at 9.60m		51.0 —	50.	.88						
							\square					
		Installation: Backfill: F	 Remar	ks:								
		From: To: Pipe Type: From: To: Type: -										
C		0.00 9.60 Bentonite										

Contract No: 5863	Rotary Core			Core F	ehole RCOS	No:					
Contract:	Moygaddy	Eastir	ng:	6	694497.168	Date	e Starte	ed:	13/07/2	021	
Location:	Maynooth, Co. Meath	North	ing:	7	739610.386	Date Com	e npleted:	:	13/07/2	021	
Client:	Sky Castle Ltd	Eleva	tion:	6	61.10	Drille	ed By:		MEDL		
Engineer:	ocsc	Rig T	ype:	5	Sondeq	Stat	us:		FINAL		
Depth (m)	Stratum Description	Legend	Lev (mO	vel)D)	Samples		R	Rock	Indices		Backfill
Scale Depth	non hole drilling driller reports returns of sandy gravelly sitty	<u></u>	Scale I	Dept	th		TCR/% S	SCR/9	% RQD/%	Fl/m	
C 0.5 1.0 1.5 2.0 2.5 3.0 4.0 4.5 5.0	_AY with cobbles.	다. '해나, '해나, '해나, '해나, '해나, '해나, '해나, '해나,	60.5 60.0 59.5 59.0 58.5 58.0 57.5 57.0 56.5 56.5 56.5								
5.5 6.0 6.30 6.5	trong to very strong light grey fine grained argillaceous		56.0	54.8	0						
7.0 -	MESTONE interbedded with moderately strong dark grey ilcareous MUDSTONE with some pyrite crystals and calcite sins (2mm thick). Fresh to slightly weathered. Discontinuities - smooth, occasionally rough, planar to undulating, tight to open, sub-horizontal, occasional sub-vertical dip, clean with occasional grey staining.		54.5		6.30 - 7.30		94	85	50	9	
8.0	Discontinuities - non-intact.		53.5		7.30 - 8.30		95	69	33	Ni	
8.5	Discontinuities - smooth to rough, planar to slightly undulating, tight to open, sub-horizontal and sub-vertical dip, clean with occasional grey staining and calcite crystals.		52.5	54.0	8.30 - 9.30		99	75	12	14	
9.5	End of Corehole at 9.30m		51.5 —	51.8							
	Installation: Backfill: F	Remar	ks:								
	Promi Io: Prpe Promi Io: Type: - 0.00 9.30 Bentonite - - <										

Contract N 5863	Rotary Core		Cor	rehole RC10	No:)						
Contract:	Moygaddy	Eastii	ng:		694428.449	Date	e Starl	ted:	13/07/2	2021	
Location:	Maynooth, Co. Meath	North	ing:		739378.834	Date Con	e nplete	d:	13/07/2	2021	
Client:	Sky Castle Ltd	Eleva	ition:	:	57.86	Drill	ed By:	:	MEDL		
Engineer:	OCSC	Rig T	ype:		Sondeq	Stat	us:		FINAL		
Depth (m)	Stratum Description	Legend	Le (m0	vel)	Samples	I		Rock	Indices	;	Backfill
Scale Depth	Open hole drilling - driller reports returns of sandy gravelly silty	<u>x</u>	Scale –	Dep	oth		TCR/%	SCR/	% RQD/%	Fl/m	
	CLAY with cobbles.		57.5								
0.5 —			_								
1.0		<u>x</u>	57.0								
			-								
1.5 _			56.5 -								
		<u>x ~ ~</u> ~	56.0								
2.0 —			-								
		8 <u>0</u> ×c	55.5 —								
2.5			-								
3.0-2.80	Strong to very strong light grey fine grained argillaceous		55.0	55.0							
-	calcareous MUDSTONE with occasional calcite veins (1mm				2 80 3 80		01	95	29		
3.5 —	thick). Fresh to slightly weathered. Discontinuities - smooth, planar, occasionally stepped, tight to open, 10-30°		54.5 —		2.00 - 3.00		91	05	20		
	dip, clean with occasional grey staining and occasional clay infill.									10	
4.0			54.0 -								
					3.80 - 4.80		95	70	55		
4.5	Discontinuities - non-intact.									Ni	
	Discontinuities - smooth, planar, occasionally stepped, tight to open, 10-20°		53.0								
5.0	olp, occasionally sub-vertical, clean with occasional grey staining and occasional clay infill.		-							9	
55	Discontinuities - non-intact.		52.5 —		4.80 - 5.80		96	60	31		
- 5 80				52 (26					Ni	
6.0 - 5.80	End of Corehole at 5.80m		52.0	52.0							
6.5											
			51.0								
7.0			-								
			50.5 —								
7.5 -			-								
8.0			50.0								
			-								
8.5			49.5 —								
			49.0								
9.0											
			48.5 —								
9.5 —			_								
-			48.0								
	Installation: Backfill: [20mar	ke:								·
A	From: To: Pipe Type: From: To: Type: -	Veniai	кэ. 								
	0.00 5.80 Bentonite										

Contract No: 5863	Rotary Core			Cor F	ehole RC11	No:					
Contract:	Moygaddy	Eastir	ng:		694711.726	Date	e Starte	ed:	12/07/2	021	
Location:	Maynooth, Co. Meath	North	ing:		739248.236	Date Corr	e npleted	ł:	12/07/2	021	
Client:	Sky Castle Ltd	Eleva	tion:		59.49	Drille	ed By:		MEDL		
Engineer:	ocsc	Rig T	ype:		Sondeq	Stat	us:		FINAL		
Depth (m)	Stratum Description	Legend	Lev (mC	vel DD)	Samples		F	Rock	Indices		Backfill
Scale Depth	oen hole drilling - driller reports returns of sandy gravelly silty	<u> </u>	Scale	Dep	oth		TCR/%	SCR/%	6 RQD/%	FI/m	
0.5 -	LAY with coddies.		- - 59.0								
			-								
1.0			58.5 — — —								
1.5 —			 58.0 —								
			-								
2.0			57.5								
25			57.0								
2.5			-								
3.0			56.5 —								
			-								
3.5 —			56.0								
4.0			- 55.5 —								
			-								
4.5			55.0								
5.0			54.5								
5.0			-								
5.5			54.0								
			-								
6.0			53.5								
6.5 6.50	rang to yony strong light grow find grained argillosooyo		53.0	52.9	99						
	MESTONE interbedded with moderately strong dark grey		-								
7.0 - th	ick). Fresh to slightly weathered.		52.5		6.50 - 7.50		97	83	43	9	
7.5	clean surfaces.		52.0								
7.80			-	51.0	69						
8.0 - LI	MESTONE interbedded with moderately strong dark grey		51.5 —		7.50 - 8.50		97	89	50		
	Icareous MUDSTONE with occasional calcite veins (1mm ick). Fresh to slightly weathered.										
	Discontinuities - smootn, pianar to sligntly undulating, tight to open, 30-50° alp, clean surfaces		51.0							7	
9.0			50.5		8.50 - 9.50		95	91	71		
			-								
9.5 - 9.50	End of Corehole at 9.40m		50.0	49.9	99						
			_								
	Installation: Backfill: F	l Remar	ks:								
	From: To: Pipe Type: From: To: Type: - 0.00 9.40 Bentonite - -										

Contract No 5863	Rotary Core	ole	Lo	og				Cor F	ehole RC1 2	No: 2	
Contract:	Moygaddy	Eastii	ng:	6	94562.423	Dat	e Start	ed:	08/07/2	2021	
Location:	Maynooth, Co. Meath	North	ing:	7	38770.148	Dat Cor	e nplete	d:	08/07/2	2021	
Client:	Sky Castle Ltd	Eleva	ition:	5	2.93	Drill	led By:	:	MEDL		
Engineer:	ocsc	Rig T	ype:	5	Sondeq	Stat	tus:		FINAL		
Depth (m)	Stratum Description	Legend	Lev (mO	vel)D)	Samples			Rocl	k Indices		Backfill
Scale Depth	pen hole drilling - driller reports returns of sandy gravelly silty	<u>x - 0</u> ,	Scale	Dept	h		TCR/%	SCR/	% RQD/%	Fl/m	
	LAY with cobbles.	0 × 0	- - 52.5 -								
0.5			-								
1.0 —		×~~~~	52.0								
		x	-								
1.5 _		× × •	51.5 —								
-		<u>~~~</u>	-								
2.0			51.0 -								
		× × ×	 50.5								
2.5 -			-								
3.0		<u>x x c</u>	50.0								
		× × •	-								
3.5 _		<u>x ~ ~ c</u>	49.5 —								
-		0 0 0 0 0	-								
4.0			49.0								
-			48.5 -								
4.5 —			-								
5.0			48.0 —								
-			-								
5.5 —		× × ×	47.5 —								
-			-								
6.0 -			47.0 —								
		200 × c	46.5								
6.5 —		<u>x</u>	40.5		50 (4,5/50 for 30m	חm)					
			46.0								
-			-								
7.5 —			45.5 —								
-		200 × c	-								
8.0 - 8.00 -	End of Corehole at 8.00m		45.0	44.9	³ N=41 (3,6/8,9,10,	14)					
8.5 —			44.5								
			44.0								
9.0			-								
9.5 —			43.5 _								
-			-								
			43.0 —				$\left - \right $		+		
	Installation: Backfill: F	Remar	ks:		1						
	From: Io: Pipe Type: From: To: Type: - 0.00 8.00 Bentonite - -										

Contract No 5863	Rotary Corehole Log										
Contract:	Moygaddy	Eastii	ng:	e	694473.806	Date	e Start	ed:	07/07/2	2021	
Location:	Maynooth, Co. Meath	North	ing:	7	738837.204	Date Completed:		d:	07/07/2021		
Client:	Sky Castle Ltd	Eleva	ition:	Ę	55.00	Drill	Drilled By: MEDL		IEDL		
Engineer:	ocsc	Rig T	ype:	5	Sondeq	Status:			FINAL		
Depth (m)	Stratum Description	Legend	Lev (mC	vel DD)	Samples			Rocł	k Indices		Backfill
Scale Depth	pen hole drilling - driller reports returns of sandy gravelly silty	<u>x - 0</u> ,	Scale	Dep	th		TCR/%	SCR/	% RQD/%	Fl/m	
	LAY with cobbles.	× × •	- - -								
0.5			- 54.5								
1.0 —		×~~~~	54.0 —								
		x_0	-								
1.5 _		× × •	53.5 —								
		<u>~~~</u>	-								
2.0			53.0								
		×~~~~									
2.5 -			52.5 -								
3.0			 52.0								
		8 <u>0</u> , × c	-								
3.5 _			51.5 _								
		× × ×	-								
4.0		2 0 0 0	51.0								
-											
4.5 -		<u>x ~ ~ c</u>	50.5 -								
5.0 —			50.0 —								
		× × ×									
5.5			49.5								
			-								
6.0			49.0								
6.5					50 (4 5/50 for 05m)					
-			40.0		50 (4,5/50 101 9511)					
7.0 —			48.0								
			-								
7.5 —		<u>x</u> ~ ~ ~	47.5 _								
			-								
8.0 8.00	End of Corehole at 8.00m	0,	47.0	47.0	0 N=39 (5,5/7,9,10,	13)					
85 -			46.5 —								
			-								
9.0			46.0								
-											
9.5			45.5 _								
			-								
	Installation: Dest-200.		ka								
A	From: To: Pipe Type: From: To: Type: -	vemar	KS:								
	0.00 8.00 Bentonite										

Contract No: 5863	Rotary Corehole Log										
Contract:	Moygaddy	Easti	ng:		694269.076	Date	e Start	ed:	07/07/2021		
Location:	Maynooth, Co. Meath	North	ing:		739051.513	Date Con	e nplete	d:	07/07/2021		
Client:	Sky Castle Ltd	Eleva	ition:	;	55.61	Drilled I			MEDL		
Engineer:	ocsc	Rig Type: Sondeq Status:			FINAL						
Depth (m)	Stratum Description	Legend	Le (m0	vel OD)	Samples			Rocł	k Indices		Backfill
Scale Depth	en hole drilling - driller reports returns of sandy gravelly silty	<u>x - 0, -</u> 0	Scale 55.5 -	Dep	oth		TCR/%	SCR/	'% RQD/%	Fl/m	
	AY with cobbles.	x o X o	-								
			55.0								
1.0											
		<u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u> <u>x</u>	-								
1.5 —		X 0	54.0								
2.0			-								
		× × ×	53.5 —								
2.5 _		<u>x o x o</u>	53.0								
-			-								
3.0		x	52.5 — -								
3.5 —		0 × 0	-								
		α <u>_</u>	52.0								
4.0											
			-								
4.5 -			51.0 — –								
5.0 —			-								
		x	50.5 — — —								
5.5											
			-								
6.0			49.5 — -								
6.5		0 × 0	-		N=39 (3,5/7,9,10,	13)					
			49.0			,					
7.0											
			-								
7.5 -		x 0 x 0	48.0								
8.0 - 8.00 -	End of Corehole at 8.00m	x		47.6	61 N=40 (3,4/6,10,10	,14)					
8.5 —											
			47.0								
9.0			46.5 —								
9.5 —											
			46.0 -								
	Installation: Backfill: F From: To: Pipe Type: From: To: Type:	kemar	KS:								
	0.00 8.00 Bentonite										

Contract No: 5863	Rotary Corehole Log										Corehole No: RC16		
Contract:	Moygaddy	Eastii	ng:	6	694648.959	Date	e Starl	ed:	08/07/2021				
Location:	Maynooth, Co. Meath	North	ing:	7	738608.023	Date Con	e nplete	d:	08/07/2021				
Client:	Sky Castle Ltd	Eleva	ition:	4	15.96	Drill	Drilled By:		MEDL				
Engineer:	ocsc	Rig T	ype:	ę	Sondeq	Status:			FINAL				
Depth (m)	Stratum Description	Legend	Le (m(vel OD)	Samples	1		Rocł	< Indices		Backfill		
Scale Depth	pen hole drilling - driller reports returns of sandy gravelly silty	<u>x - 0 - 0</u>	Scale	Dep	th		TCR/%	SCR/	% RQD/%	Fl/m			
	AY with cobbles.	<u>x o × o</u>		-									
			-	-									
1.0			45.0										
		<u>x x c</u>	-										
1.5 —		x	44.5 — —	•									
20			 44.0 —	-									
2.0			-										
2.5 —			43.5 —										
		× × •	_										
3.0		× ~ ~ ~	43.0										
		× × ×	-										
3.5 —		x	42.5 —										
4.0			42.0										
4.0		<u>x o × c</u>	-	-									
4.5 —			41.5 —										
			-										
5.0			41.0										
5.5 -		<u>x o × c</u>	40.5 -										
6.0			40.0										
-			-										
6.5 —			39.5 — 	-	N=37 (3,3/5,8,11,	13)							
		200 200 200 200	-										
7.0			39.0										
			-										
7.5 —													
8.0 8.00			 38.0	37.9	6 N=43 (3 6/8 9 12	14)							
	End of Corehole at 8.00m					,							
8.5 —			37.5 —										
-			-	-									
9.0			37.0										
			-										
9.5 —													
									_				
	Installation: Backfill: F	l Remar	ks:										
	From: To: Pipe Type: From: To: Type: -												

Cont	ract No 863	Rotary Core	Corehole No: RC17									
Contra	act:	Moygaddy	Eastir	ng:	69	93707.911	Date Started:		ed:	19/07/2021		
Locat	ion:	Maynooth, Co. Meath	North	ing:	7:	39303.990	Date Com	Date Completed:		19/07/2021		
Client	:	Sky Castle Ltd	Eleva	tion:	54	4.78	Drilled B		By: MEDL			
Engin	eer:	OCSC	Rig T	ype:	S	ondeq	Statu	us:		FINAL		
Dept	n (m)	Stratum Description	Legend	Leve (mOl	el D)	Samples			Rock	k Indices		Backfill
Scale	Depth		······································	Scale [) eptł	י י		TCR/%	SCR/%	% RQD/%	Fl/m	
0.5		CLAY with cobbles.	제, 1 전, 1	54.5								
1.5				53.0								
2.5				52.5								
3.0				51.5								
3.5			제, 1 에, 1 억, 1 8.6 1 8.6 1 8.6 8.6 1 8.6 1 8.6 1 8.1 8.6 1 8.6 1	51.0								
4.5 -			1. 1 21 22 22 22 22 22 22 22 22 22 22 22 2	50.5								
5.0			4 4 4 4 4 4 4 4 4 4	49.5								
6.0				49.0								
6.5	6.80 -		A+ A+ A	48.5	17.98							
7.0		Strong to very strong light grey fine grained argillaceous IMESTONE interbedded with moderately strong dark grey calcareous MUDSTONE with occasional calcite veins (2mm hick). Fresh to slightly weathered.		47.5		6.80 - 7.80		98	57	45	Ni	
8.0		Discontinuities - smooth to rough, planar to slightly undulating, tight to open, 30-50° dip, occasionally sub-horizontal and sub-vertical, clean with occasional clay infill.		47.0								
8.5 —				46.5		7.80 - 8.80		98	66	43	9	
9.0				46.0		8.80 - 9.80		97	69	59		
9.0 -	9.80	End of Corehole at 9.80m		45.0 2	14.98		\square					
		Installation: Backfill: F From: To: Pipe Type: From: To: Type: - 0.00 9.80 Bentonite -	Remar	ks:								

Contract No: 5863	·· Rotary Corehole Log											
Contract:	Moygaddy	Easti	ng:	(693667.400	Date	e Start	ed:	20/07/2			
Location:	Maynooth, Co. Meath	North	ing:	-	739242.451	Date Con	e npleter	d:	20/07/2021			
Client:	Sky Castle Ltd	Eleva	ition:	4	49.86 Drill		Drilled By:		MEDL			
Engineer:	ocsc	Rig T	ype:		Sondeq	Stat	us:		FINAL			
Depth (m)	Stratum Description	Legend	Le (m(vel OD)	Samples			Rock	k Indices		Backfill	
Scale Depth	en hole drilling - driller reports returns of sandy gravelly silty	<u> </u>	Scale –	Dep	th	' т		TCR/% SCR/		% RQD/%	Fl/m	
	AY with cobbles.	x <u>o</u>	49.5 —									
0.5 —		<u>x o × c</u>	-									
1.0		X 0 X	49.0									
-		X _ 0, _	40.5									
1.5 _		<u>x</u> 0 <u>x</u>	40.5 -									
-		<u>x ~ ~ ~</u>	48.0									
2.0		<u>x</u> • ×	-									
25 -			47.5 —									
-												
3.0 —			47.0									
			465 -									
3.5 —		0 <u>0</u> <u>0</u>	-									
			46.0									
4.0			-									
4.5		<u>x o × c</u>	45.5 —									
-			-									
5.0 —			45.0									
-			44.5 —	-								
5.5			-									
-		<u>x ~ ~ ~</u>	44.0									
6.0			-									
6.5			43.5 —		N=45 (5.7/9.11.12	.13)						
						,,						
7.0			43.0									
			42.5 —									
7.5 —			-									
8 0 8 00			42.0	11 0	N-45 (6 6/0 10 12	14)						
0.0 0.00	End of Corehole at 8.00m			41.c	N=45 (0,0/9,10,12	,14)						
8.5 —			41.5 -									
			-									
9.0			41.0									
			40.5 —									
9.5 —												
			40.0									
	Installation: Backfill	Remar	ks:					L				
A	From: To: Pipe Type: From: To: Type: -	Jonal										
	0.00 8.00 Bentonite											

Contract No 5863	Rotary Core	Corehole No: RC19									
Contract:	Moygaddy	Easti	ng:	69	94613.822	Date	e Starte	ed:	12/07/2021		
Location:	Maynooth, Co. Meath	North	ing:	73	39485.171	Date Corr	e npleted	4:	12/07/2021		
Client:	Sky Castle Ltd	Eleva	ition:	58	8.39	Drill	ed By: MEDL				
Engineer:	ocsc	Rig Type:		S	ondeq	Stat	us:		FINAL		
Depth (m)	Stratum Description	Level Legend (mOD) Samples		Samples		F	Rock	k Indices		Backfill	
Scale Depth		<u></u>	Scale D	epth	י '		TCR/%	SCR/9	% RQD/%	Fl/m	
0.5 1.0 1.5 2.0 3.5 4.0 	LAY with cobbles.		58.0 57.5 57.5 57.0 56.5 56.0 55.5 55.5 55.5 55.0 55.0 55								
4.5 - 5.0 - 5.10 - 5.5 - 6.0	Strong to very strong light grey fine grained argillaceous IMESTONE interbedded with moderately strong dark grey calcareous MUDSTONE with occasional pyrite crystals and calcite veins (5mm thick). Fresh to slightly weathered. Discontinuities - smooth to rough, planar, occasionally stepped, tight to open, sub-horizontal dip, occasionally 60° dip and sub-vertical, clean.		54.0 5 53.5 5 53.0	33.29	5.10 - 6.10		98	97	45	11	
6.5	Discontinuities - smooth to rough, planar, occasionally stepped, tight to open, sub-horizontal and sub-vertical dip, clean with occasional grey staining.		51.5		6.10 - 7.10		100 94	98	0	18	
8.5 9.0 9.5	End of Corehole at 8.10m		49.5 - 48.5 -								
	Installation: Backfill: F From: To: Pipe Type: From: To: Type: - 0.00 8.10 Bentonite - - - -	Remar	ks:								

Cont 5	ract No 863	Rotary Core	Corehole No: RC20								
Contr	act:	Moygaddy	Easti	ng:		694717.266	Date Started		09/07/2021		
Locat	ion:	Maynooth, Co. Meath	North	ing:		739392.581	Dat Cor	e npleted:	09/07/2		
Client	t:	Sky Castle Ltd	Eleva	tion:		59.02	Drilled By:		MEDL		
Engin	ieer:	OCSC	Rig T	ype:		Sondeq	Stat	tus:	FINAL		
Dept	h (m)	Stratum Description	Legend	Le (m0	vel OD)	I Samples		Roc	ck Indices		Backfill
Scale	Depth C	open hole drilling - driller reports returns of sandy gravelly silty	<u>~~~</u>	Scale	De	pth .		TCR/% SCR	/% RQD/%	Fl/m	
-	C	LAY with cobbles.		-							
0.5 —				58.5 —							
			<u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-							
1.0			0 0	58.0							
1.5 -			× × ×	575 —							
-				-							
2.0				57.0 —							
-			× ×	-							
2.5 _			8 <u>0</u> × 0	56.5 —							
=			<u>x ~ ~ ~</u>	_							
3.0			0 	56.0							
-			×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-							
3.5 —				55.5 —							
				-							
4.0 -			<u>x 0 x 0</u>	55.0							
45			<u>x 0 × 0</u>	-							
-											
5.0 -				54.0							
-			× × ×	-							
5.5 -											
=				-							
6.0 -			<u>x ° × °</u>	53.0							
-			<u>x ~ ~ ~</u>	-							
6.5 _			<u>x</u>	52.5 —							
				-							
7.0			× ° × °	52.0							
75 -				515 -							
-	7 90		000 00 00 00 00 00 00 00 00 00 00 00 00		51	22					
8.0	^{7.80} C	ppen hole drilling - driller reports returns of limestone bedrock.		51.0	51.	22					
				-							
8.5 —											
=				-							
9.0				50.0							
-	9.30 —	End of Corehole at 9.30m		-	49.	72					
9.5 —				49.5 —							
_											
		Installation Deskelle		kc:							
1	(I)	From: To: Pipe Type: From: To: Type:	vernar	KS:							
(0.00 9.30 Bentonite									

RC04 Box 1 of 1

RC05 Box 1 of 1

RC06 Box 1 of 1

RC07 Box 1 of 1

RC08 Box 1 of 1

RC09 Box 1 of 1

RC10 Box 1 of 1

RC11 Box 1 of 1

RC17 Box 1 of 1

RC19 Box 1 of 1

Appendix 3 Trial Pit Logs and Photographs

Contra 5	act No: 863		1	rial Pi	t Lo	g							Trial Pit N	No:
Contra	act:	Moygaddy			Easting	:	693958	8.608		Date:		16/0)6/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing	g:	739151	.571		Excavato	or:	JCE	3 3CX	
Client	:	Sky Castle Ltd			Elevatio	on:	55.32			Logged I	3y:	M. ł	Kaliski	
Engin	eer:	ocsc			Dimens (LxWxD	ions) (m):	4.30 x	0.60 x	2.10	Status:		FIN	AL	
Level	(mbgl)		Stratum Description	on		I	_egend	Level	(mOD) Sam	oles /	Field	d Tests	Water Strike
Scale:	Deptn	TOPSOIL.						Scale:	Deptr		iyp	pe	Result	
	0.10	Stiff grey brown slight cobble and low boulde ine to coarse, angular boulders are angular diameter). Obstruction - boulders	own sandy slightly gr nt. Sand is fine to coa prounded of limeston one.	elly silty CLA elly silty CLA ne to coarse. nestone. Cob estone (up to m	AY with sine to e angula		이 승이 승이 승이 승이 승이 가지 않는 것이 하는 것이 있는 것이 있다. 또 또 또 또 또 또 또 또 또 한 것이 있는 것 한 것이 있는 것이 없는 것	55.0 — - - - - - - - - - - - - - - - - - - -	55.22	2 0.50 1.00 2 2.00	B	BR	MK14 MK15 MK16	
											+	+		
	\sim	Termination:	Pit Wall Stability:	Groundwater	Rate:	Remar	ks:		1	Key:				
		Obstruction - boulders.	Pit walls stable.	Dry	-					B = D = CBR ES =	Bulk Sma = Uno Envir	c distr all dis distur	urbed sturbed rbed CBR ental	

Contra 5	act No: 863		1	rial Pi	t Lo	g							Trial Pit I	No: 2
Contra	act:	Moygaddy			Easting:		693988	3.420		Date:		16/	/06/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing	g:	739286	6.118		Excavato	or:	JCI	B 3CX	
Client	:	Sky Castle Ltd			Elevatio	n:	57.37			Logged I	Зу:	M.	Kaliski	
Engin	eer:	ocsc			Dimensi (LxWxD	ons) (m):	4.00 x	0.60 x	3.00	Status:		FIN	NAL	
Level	(mbgl)		Stratum Description	on			Legend	Level	(mOD) Sam	ples /	Fie	ld Tests	Water Strike
Scale.	Depui	TOPSOIL.						Scale.	Depti		19	Je	Result	
	0.10	Firm becoming stiff gr CLAY with high cobbles and boulders.	ndy slightly gravelly s to coarse. Gravel is fi one. Cobbles are ang tly sandy slightly grav is fine to coarse. Gra d of limestone. Cobbl one.	ilty CLAY with ne to coarse, jular to subrou velly silty CLA vel is fine to o les are angula ndy slightly gra ntent. Sand is subrounded ounded of lime	h low cob angular unded of AY with hi coarse, ar to avelly silt s fine to of limesto estone (u	gh gh up to the test of the test of the test of test o	ទំហិនហិនំហិនហិនំហិនំហិនហិនំហិនហិនំហិនហិនំហិនហិនំហិនំ		57.27	0.50 1.00 2.00	E	ŝ	МК07 МК08 МК09	
_						e, C.								
3.0	3.00		Pit terminated at 3.00	m				-	54.37	3.00	E		MK10	
								54.0 —						
35_								-						
3.5 -								-						
						-								
						-								
								53.5 -						
						-								
		Termination:	Pit Wall Stability	Remar	ks:			Kov						
1				Dari		ional					ייייים	- ئام	turbad	
		Scheaulea depth.	PIL WAIIS STADIE.	Dry	-					B = D = CBR ES =	Sma Sma = Uno Envir	all di distu onm	isturbed urbed CBR nental	

Contra 5	act No: 863		1	rial Pi	t Log	g							Trial Pit I	No: 3
Contra	act:	Moygaddy			Easting:		693767	7.173		Date:		16/	06/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing	J:	739286	6.781		Excavato	or:	JCI	B 3CX	
Client	:	Sky Castle Ltd			Elevatio	n:	55.26			Logged I	Зу:	M.	Kaliski	
Engin	eer:	OCSC			Dimensi (LxWxD)	ons) (m):	4.20 x	0.60 ×	(1.40	Status:		FIN	IAL	
Level	(mbgl)		Stratum Descriptio	on	<u>, </u>		Leaend	Level	(mOD) Sam	oles /	Fiel	ld Tests	Water
Scale:	Depth							Scale:	Depth	n: Depth	Тур	ре	Result	Strike
	0.10	TOPSOIL. Firm brown slightly sa and boulder content. S angular to subrounder angular to subrounder boolde and medium b s fine to coarse, angu- boulders are angular to diameter). Qbstruction - boulders	ndy slightly gravelly s Sand is fine to coarse d of limestone. Cobbl d of limestone (up to soulder content. Sand lar to subrounded of lime s. Pit terminated at 1.400	silty CLAY wit e. Gravel is fir les and bould 300mm diam silty CLAY wit is fine to coa limestone. Co estone (up to	h low cok ne to coal ers are eter). h high irse. Grav obbles ar 300mm	/el		55.0	55.16	0.50 0.50 1.00	B	3 3R 3	МК01 МК02 МК03	
-								-]					
		Transfer (1							
1		Destruction	Pit Wall Stability:	Groundwate	r Rate: F	kemar	KS:			Key	Bull	cdia	turbed	
C		boulders.	r it waits stable.	Dry	-					D = CBR ES =	Sma Sma = Uno Envir	all di distu ronm	isturbed Irbed CBR nental	

Contra 5	act No: 863		٦	Frial Pi	t Log							Trial Pit I	No: 4
Contra	act:	Moygaddy			Easting:	6936	82.930		Date:		17/	/06/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	7395	02.916		Excavato	or:	JC	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	56.9	5		Logged I	By:	M.	Kaliski	
Engin	eer:	OCSC			Dimensions (LxWxD) (m	4.20	x 0.60 x	× 2.40	Status:		FIN	IAL	
Level	(mbgl)		Stratum Descripti	on		Leger	d Level	(mOD) Sam	oles /	Fie	ld Tests	Water
Scale:	Depth	TOPSOIL					Scale:	Deptr	Depth	Iy	pe	Result	Ounce
	0.10 0.50 2.30 2.40	TOPSOIL. Soft brown slightly sar cobble content. Sand angular to subrounded subrounded of limesto Firm grey brown sligh cobble and low boulde fine to coarse, angula boulders are angular to diameter). Stiff grey slightly sand and medium boulder of coarse, angular to sub are angular to subroun Obstruction - boulders	ndy slightly gravelly s is fine to coarse. Gra d of limestone. Cobb one. tly sandy slightly gra er content. Sand is fine to subrounded of lime to subrounded of lime by slightly gravelly silf content. Sand is fine prounded of limestone (u s. Pit terminated at 2.40	silty CLAY with avel is fine to o les are angula velly silty CLA ne to coarse. The mestone. Cob estone (up to ty CLAY with h to coarse. Gra- le. Cobbles ar p to 500mm d	h medium coarse, ar to Y with high Gravel is bles and 500mm	- 상책 상책 -	56.5 - 56.7 - 56.0 - 55.5 - 55.0 - 55.0 - 55.0 -	56.85	5 0.50 1.00	E	3R	МК43 МК44	
								-					
							53.0	-					
		Termination	Pit Wall Stability	Groundwater	Rate: Dom	arke:			Kor				
		Obstruction - boulders.	Pit walls stable.	2.00 Seepa	ge -	iai 1\ ə .			B = D = CBR ES =	Bulk Sma = Une Envir	c dis all di distu ronm	turbed isturbed ırbed CBR nental	

Contra 5	act No: 863		1	rial Pi	t Log						Т	rial Pit I	No: 5
Contra	act:	Moygaddy			Easting:	693971	1.792		Date:		17/06	6/2021	
Locat	ion:	Maynooth, Co. Meath			Northing:	739656	6.168		Excavato	r:	JCB :	3CX	
Client	:	Sky Castle Ltd			Elevation:	58.70			Logged B	sy:	M. Ka	aliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m)	3.90 x	0.60 >	(2.60	Status:		FINA	L	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	oles /	Field	Tests	Water
Scale:	Depth		-			-	Scale:	Depth	n: Depth	Тур	be F	Result	Sunke
	0.10	Firm brown slightly sand subrounded of limeston	dy slightly gravelly s fine to coarse. Gra of limestone. Cobbl e. dy slightly gravelly o to coarse, angular	ilty CLAY with vel is fine to o es are angula clayey SILT. S to subrounde	n medium coarse, ar to Band is fine ed of			58.60	0.50	ICB	BR I	MK39 MK40	
	1.50	Firm grey brown slightly cobble and low boulder ine to coarse, angular to boulders are angular to diameter).	y sandy slightly grav content. Sand is fir to subrounded of lin subrounded of lime	velly silty CLA ne to coarse. nestone. Cob estone (up to	Y with high Gravel is bles and 500mm	과 강제 날짜 날짜 날짜 날짜 날짜 날짜 날짜 날짜 날짜 다 빠가 있지 않지 않지 않지 않지 않다. 승 승 승 승 승 승 승 승		57.20	2.00	В		MK41	
	2.40	Stiff black slightly sandy and medium boulder co coarse, angular to subro are angular to subround Obstruction - boulders.	y slightly gravelly sil ontent. Sand is fine ounded of limestone ded of limestone (up Pit terminated at 2.60	ty CLAY with to coarse. Gra e. Cobbles ar o to 500mm d m	high cobble avel is fine to id boulders iameter).			56.30	2.50	В	. r	МК42	
										<u> </u>			
		Termination: P	Pit Wall Stability:	Groundwater	Rate: Rema	arks:			Kev:				
		Pit wall instability. W	Valls collapsing between 1.50mbgl and 2.40mbgl.	1.70 Slow	-				B = D = CBR ES =	Bulk Sma = Unc Envir	distur all distu disturb	bed urbed bed CBR ntal	

Contra 58	act No: 863		٦	Frial Pi	t Log						1	Frial Pit I	No: 6
Contra	act:	Moygaddy			Easting:	69398	9.839		Date:		17/06	6/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:	73943	7.563		Excavato	r:	JCB	3CX	
Client	÷	Sky Castle Ltd			Elevation:	57.88			Logged B	sy:	M. Ka	aliski	
Engin	eer:	OCSC			Dimensions (LxWxD) (n	4.40 >	0.60 >	2.50	Status:		FINA	L	
Level	(mbgl)		Stratum Descripti	on		Legend	Level	(mOD) Samp	les /	Field	Tests	Water Strike
Scale:	Depth						Scale:	Deptr	Depth	Typ		Result	Ounto
-	0.10	Soft brown slightly sai coarse. Gravel is fine	ndy slightly gravelly s to coarse, angular to	silty CLAY. Sa subrounded	nd is fine to of limestone	· X · · · · X	-	57.78	3				
0.5	0.30	Firm grey brown sligh cobble and low boulde fine to coarse, angula boulders are angular t diameter).	tly sandy slightly gra er content. Sand is fil r to subrounded of lir to subrounded of lime	velly silty CLA ne to coarse. nestone. Cob estone (up to	Y with high Gravel is bles and 500mm		57.5 - - - 57.0	57.58	0.50	ICB	R	MK46	
1.0	1.30	Firm brown slightly sa cobble content. Sand	ndy slightly gravelly is fine to coarse. Gra	clayey SILT w	rith low coarse,		- - - 56.5 -	56.58	1.00	В		MK47	
1.5	2.00	angular to subrounded subrounded of limesto	d of limestone. Cobb one.	les are angula	ar to		- - - 56.0 —		1.50	В		MK48	•
-	2.40	Firm grey brown sligh cobble and low boulde fine to coarse, angula boulders are angular t diameter).	tly sandy slightly gra er content. Sand is fil r to subrounded of lim to subrounded of lime	velly silty CLA ne to coarse. nestone. Cob estone (up to	Y with high Gravel is bles and 500mm		- - 55.5 -	55.48	2.20	В		MK49	
2.5 — _ _ _	2.50	and medium boulder of coarse, angular to sub are angular to subrout Obstruction - boulders	content. Sand is fine prounded of limeston nded of limestone (u 5. Pit terminated at 2.50	to coarse. Gra e. Cobbles ar p to 500mm d	avel is fine to d boulders iameter).		-	55.38	3 2.50	В		MK50	
3.0							55.0 — -	-					
							- - 54.5 –	-					
3.5								-					
							-						
		Obstruction - boulders.	Pit walls stable.	2.00 Seepa	ge -				B = D = CBR ES =	Bulk Sma = Unc Envir	distur III distu listurb	rbed urbed bed CBR ntal	

Contra 5	act No: 863		1	Frial Pi	t Log						Trial T	Pit No: P07
Contra	act:	Moygaddy			Easting:	69417	6.647		Date:		17/06/20	21
Locat	ion:	Maynooth, Co. Meat	th		Northing:	73944	6.736		Excavato	r:	JCB 3C>	(
Client	:	Sky Castle Ltd			Elevation:	58.93			Logged B	y:	M. Kalisł	(i
Engin	eer:	ocsc			Dimensions (LxWxD) (m): 4.20 >	0.60 x	2.50	Status:		FINAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	les /	Field Tes	ts Water
Scale:	Deptn	TOPSOIL.					Scale:	Deptr		Тур	be Res	
	0.10	Soft brown slightly sar coarse. Gravel is fine Firm becoming stiff gr CLAY with high cobble coarse. Gravel is fine Cobbles and boulders 400mm diameter).	ndy slightly gravelly s to coarse, angular to ey brown slightly sar e and low boulder co to coarse, angular to are angular to subro	silty CLAY. Sa <u>subrounded</u> idy slightly gra ntent. Sand is subrounded bunded of lime	nd is fine to of limestone avelly silty of limestone estone (up to	. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		58.83	0.50	ICB	R MK	51
	2.40	Stiff black slightly san and medium boulder of coarse, angular to sub are angular to subroun Dbstruction - boulders	dy slightly gravelly si content. Sand is fine prounded of limeston nded of limestone (u) 5. Pit terminated at 2.50	Ity CLAY with to coarse. Gra e. Cobbles ar p to 500mm d m	high cobble avel is fine to d boulders iameter).		56.5	56.43	2.50	В	MK	53
1		Iermination:	Pit Wall Stability:	Groundwater	Rate: Rem	arks:			Key:	D		
6		Obstruction - boulders.	Pit walls stable.	Dry	-				В = D = CBR : ES =	Bulk Sma Unc= Envire	disturbed all disturbe disturbed (onmental	d CBR

Contra 5	act No: 863		1	Frial Pi	t Log							Trial Pit I TP08	No: 3
Contra	act:	Moygaddy			Easting:	69419	9.733		Date:		17/	06/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:	73971	2.642		Excavato	or:	JCI	B 3CX	
Client		Sky Castle Ltd			Elevation:	61.26			Logged E	Зу:	M.	Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m	3.80 >	(0.60)	c 1.40	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Sam	oles /	Fiel	ld Tests	Water
Scale:	Depth						Scale:	Depth	n: Depth	Ту	pe	Result	Suike
	0.10	FOPSOIL. Soft brown slightly sar cobble content. Sand angular to subrounded subrounded of limesto subrounded of limesto and medium boulder of coarse, angular to subround are angular to subround Obstruction - boulders	ndy slightly gravelly s is fine to coarse. Gra d of limestone. Cobbl one. tly sandy gravelly silt content. Sand is fine prounded of limeston nded of limestone (up 3. Pit terminated at 1.400	n medium coarse, ar to high cobble avel is fine to d boulders iameter).			61.10	0.50 0.50 1.00	B	BR	MK37 MK38		
_							-	-					
-							58.0 —	-					
							-	-					
3.5 —							-	_					
_							-	-					
_							57.5 -	-					
								-		<u> </u>			
		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	narks:	1	1	Key:				
(Obstruction - boulders.	Pit walls stable.	Dry	-				B = D = CBR ES =	Bulk Sma = Un Envir	k dist all di distu ronm	turbed sturbed irbed CBR iental	

Contra 5	act No: 863		1	Frial Pi	t Log							Trial Pit I	No: 9
Contra	act:	Moygaddy			Easting:	69450	3.798		Date:		17/	06/2021	
Locat	ion:	Maynooth, Co. Meat	h		Northing:	73970	1.821		Excavato	r:	JCI	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	62.01			Logged E	3y:	M.	Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m): 4.00 ×	0.60 x	1.60	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	oles /	Fiel	ld Tests	Water
Scale:	Depth -	TOPSOIL.					Scale:	Depth	n: Depth	Ту	pe	Result	Ounce
	0.10	Tim becoming stiff gr CLAY with high cobble coarse. Gravel is fine Cobbles and boulders 400mm diameter).	ey brown slightly san e and low boulder co to coarse, angular to are angular to subro s. Pit terminated at 1.60	m	avelly silty fine to of limestone estone (up to	144 274 144 44 274 144 274 144 144 274 144 144 144 144 144 144 144 144 144 1		60.4	1 0.50 1.20	B	3R	MK60 MK61	
1		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	arks:			Key:				
		Obstruction - boulders.	Pit walls stable.	Dry	-				B = D = CBR ES =	Bulk Sma = Un Envir	k dist all di distu ronm	turbed isturbed irbed CBR nental	

Contra 5	act No: 863		٦	Frial Pi	t Log							Trial Pit I	No:)
Contra	act:	Moygaddy			Easting:	69448	6.386		Date:		17/	06/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:	739434	4.493		Excavato	or:	JCE	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	58.96			Logged E	Зу:	M. I	Kaliski	
Engin	eer:	OCSC			Dimensions (LxWxD) (m): 4.30 ×	0.60 >	2.40	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	oles /	Fiel	ld Tests	Water
Scale:	Depth		-				Scale:	Depth	n: Depth	Тур	be	Result	Sinke
	2.40	TOPSOIL. Soft brown slightly sar cobble content. Sand angular to subrounded subrounded of limesto Firm becoming stiff gr CLAY with high cobble coarse. Gravel is fine Cobbles and boulders 400mm diameter).	ndy slightly gravelly s is fine to coarse. Gra d of limestone. Cobb one. ey brown slightly sar e and medium boulde to coarse, angular to s are angular to subro are angular to subro s. Pit terminated at 2.40	silty CLAY with avel is fine to o les are angula ndy slightly gra er content. San o subrounded of bunded of lime m	a medium coarse, ar to avelly silty nd is fine to of limestone estone (up to	2.4% - 2% - 2% - 2% - 2% - 2% - 2% - 2% -		58.50	0.50 1.00 2.40	ICB B	BR	MK62 MK63 MK64	
							-	1					
							55.0 -						
	\sim	Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	l arks:			Kev:				
		Obstruction - boulders.	Pit walls stable.	2.10 Seepag	ge -				B = D = CBR ES =	Bulk Sma = Uno Envir	dist all dis distu onm	turbed sturbed irbed CBR iental	

Contra 5	act No: 863		1	Frial Pi	t Lo	g							Trial Pit I	No:
Contra	act:	Moygaddy			Easting	:	694739	9.889		Date:		17/	/06/2021	
Locati	ion:	Maynooth, Co. Mea	th		Northing	g:	739363	8.529		Excavat	or:	JC	B 3CX	
Client	:	Sky Castle Ltd			Elevatio	on:	59.42			Logged	By:	М.	Kaliski	
Engin	eer:	OCSC			Dimens (LxWxD	ions)) (m):	4.10 x	0.60 x	2.30	Status:		FIN	NAL	
Level	(mbgl)	I	Stratum Description	on			Legend	Level	(mOD) Sam	ples /	Fie	ld Tests	Water
Scale:	Depth							Scale:	Depth	: Depth	n Ty	pe	Result	Strike
	0.10	Soft brown slightly sa coarse. Gravel is fine Firm becoming stiff gr CLAY with high cobble coarse. Gravel is fine Cobbles and boulders 400mm diameter).	ndy slightly gravelly s to coarse, angular to rey brown slightly sar e and low boulder co to coarse, angular to s are angular to subro	silty CLAY. Sa o subrounded ndy slightly gra ntent. Sand is o subrounded ounded of lime	nd is fine of limest avelly sil fine to of limest estone (t	ty to to to the transmission of transmission of the transmission of the transmission of the transmission of transmission of the transmission of tr	장기상의 추위상기장의 추위 수위 수위상에서 제품에 대해 1411 보험 다른 다른 다른 다른 다른 다른 다른 1411 대 내 한다. 번만 한다. 번만 한다. 번만 한다. 가ዚ 가내, 가내, 가내	- - 59.0 - - 58.5 - - - - - - - - - - - - - - - - - -	58.92	2 0.50	ICE	BR	MK57	
	2.10	Stiff arou brown slight	ly condy clightly group	<mark>4</mark> 세고'에-그'에-그'에-그'에-그'에-그'에-그'에	해이다. 바이다 아이다 아이다 아이다 아이다 바이다 바이다 아이다 아이다 아이나	58.0 — - - 57.5 —	57.32	1.50	B	3	MK58	▼		
2.5 -	2.30	cobble and boulder co coarse, angular to sub are angular to subrou Obstruction - boulders	ontent. Sand is fine to prounded of limestone (uj s. Pit terminated at 2.30	e. Cobbles ar p to 400mm d	vel is find hd bould iameter)	e to ers		- 57.0 — - -	57.12	2.20	E	3	МК59	
3.0								56.5 — - - 56.0 —						
3.5								- - - 55.5 -						
		Termination:	Pit Wall Stability:	Groundwater	Rate:	Remar	ˈksː			Key	:			
	5)	Obstruction - boulders.	Pit walls stable.	1.80 Seepa	ge ·	-				B = D = CBF ES :	Bulł Sma R = Un Envii	k dis all di distu ronm	turbed isturbed urbed CBR nental	

Contra 5	act No: 863		٦	Frial Pi	t Log								Trial Pit TP1	No: 2
Contra	act:	Moygaddy			Easting:	6	694471	.269		Date	:	ŕ	17/06/2021	
Locat	ion:	Maynooth, Co. Meat	h		Northing:	7	739060	.502		Exca	vator	: .	JCB 3CX	
Client	:	Sky Castle Ltd			Elevation:	5	56.97			Logg	jed By	/:	V. Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (n	s n):	3.70 x	0.60 ×	2.30	Statu	IS:	F	FINAL	
Level	(mbgl)		Stratum Description	on		Le	egend	Level	(mOD) S	Sampl	es / F	Field Tests	Water Strike
Scale:	Depth	TOPSOIL.						Scale:	Deptr	I: De	epin	туре	e Result	
	0.10 0.50 1.60 2.20 2.30	TOPSOIL. Soft brown slightly sat subrounded of limesto imestone. Firm grey brown sligh cobble and low boulde ine to coarse, angula boulders are angular to diameter). Grey brown slity sand GRAVEL of limestone Sand is fine to coarse subrounded of limesto cobble and low boulde ine to coarse, angula coulders are angular to coarse, angular to sub and medium boulder of coarse, angular to sub are angular to subrou Dbstruction - boulders	ndy slightly gravelly s o coarse. Gravel is fi one. Cobbles are ang tly sandy slightly graver er content. Sand is fin to subrounded of lime by subrounded of lime to subrounded of lime to subrounded of lime to subrounded of lime to subrounded of lime dy slightly gravelly si content. Sand is fine prounded of limeston nded of limestone (u) s. Pit terminated at 2.30	silty CLAY with ne to coarse, jular to subrou velly silty CLA ne to coarse. (mestone. Cob estone (up to - d low boulder ers are angula ameter). velly silty CLA nestone. Cob estone (up to - to coarse. Gra e. Cobbles ar p to 400mm d m	n low cobble angular to inded of Y with high Gravel is bles and 400mm nded content. ar to Y with high Gravel is bles and 400mm high cobble avel is fine t id boulders iameter).	· · · · · · · · · · · · · · · · · · ·		56.5 - - - - - - - - - - - - - - - - - - -	56.87 56.47 55.47 55.37 54.67	2. ,	.00	B	R МК34 МК35 МК36	
								-	-					
-								- 53 0 —						
		1	I	I	I			50.0		1				
1		Termination:	Pit Wall Stability:	Groundwater	Rate: Ren	narks	s:			ŀ	Key:			
		Obstruction - boulders.	Pit walls stable.	1.50 Seepa	ge -					E C E	B = D = CBR = ES = E	Bulk (Smal Undi Enviro	disturbed I disturbed sturbed CBR nmental	

Contra 58	act No: 863		٦	t Log						Trial Pit No: TP13				
Contra	act:	Moygaddy			Easting:	6	694562	2.423		Date:		16	/06/2021	
Locati	ion:	Maynooth, Co. Meat	h		Northing:	7	738770).148		Excava	ator:	JC	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	5	52.93			Logge	l By:	M.	Kaliski	
Engin	eer:	ocsc			Dimension: (LxWxD) (r	s ; n): ;	3.90 x	0.60 x	2.10	Status		FI	NAL	
Level	(mbgl)		Stratum Description	on		Le	egend .	Level	(mOD) Sa	nples	/ Fie	eld Tests	Water Strike
Scale: Scale:	Depth 0.10 1.20 0 1.60 0 2.10	TOPSOIL. Soft becoming firm browith high cobble contectors, angular to subsounded of limestors subrounded of limestors and is fine to coarse subrounded of limestors. Gravel is fine Cobbles and boulders 400mm diameter).	own slightly sandy sl ent. Sand is fine to co prounded of limeston one. y fine to coarse, ang with high cobble and . Cobbles and boulde one (up to 400mm dia ey brown slightly sar e and low boulder co to coarse, angular to s are angular to subro s. Pit terminated at 2.10	ightly gravelly barse. Gravel i e. Cobbles are ular to subrour d low boulder of ers are angula ameter). ndy slightly gra ntent. Sand is o subrounded of bunded of lime	silty CLAY s fine to angular to anded content. r to velly silty fine to of limestone stone (up t			Scale: 	52.83 52.83 51.73 51.33 50.83	1.54 2.04 3 1.54 3 2.04	tn Iy) IC) I	pe BR 3	MK27 MK28 MK29 MK30	
								49.0 —						
		Termination: Pit Wall Stability: Groundwater Rate: Rem							1	Ke	y:		I	<u> </u>
		Obstruction - boulders. Pit walls stable. 1.80 Seepage -								B = D = CE ES	= Bul = Sm = Ur = Envi	k dis all d ndisti	sturbed listurbed urbed CBR nental	

Contra 5	act No: 863		1	t Log			Trial Pit No: TP14					
Contra	act:	Moygaddy			Easting:	69424	10.465		Date:		16/06/2021	
Locati	ion:	Maynooth, Co. Meat	h		Northing:	7390 ⁻	0.894		Excavator	:	JCB 3CX	
Client		Sky Castle Ltd			Elevation:	55.01			Logged B	y:	M. Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m	3.90	x 0.60 >	¢ 2.00	Status:		FINAL	
Level	(mbgl)		Stratum Description	on		Legen	Level	(mOD) Samp	les /	Field Tests	Water
Scale: Scale: - - - - - - - - - - - - -	0.10 1.60	TOPSOIL. Soft becoming firm browith low cobble conter coarse, angular to sub subrounded of limesto Stiff grey brown slight cobble and low boulde ine to coarse, angula coulders are angular to diameter). Obstruction - boulders	bown slightly sandy sli nt. Sand is fine to coa prounded of limeston one. ly sandy slightly grav er content. Sand is fin r to subrounded of lime s. Pit terminated at 2.000	elly silty CLAN nestone. Cobles estone (up to o	silty CLAY s fine to e angular to f with high Gravel is bles and 400mm		Scale: Scale: 54.5 54.6 53.5 53.5 53.6 53.7 53.8 53.0	53.0 ⁻¹	 Depth 0.50 1.00 1.80 1.80 	ICB B	R MK24 MK25 MK26	
		Termination:	arks:			Kev:						
		Obstruction - boulders.	Pit walls stable.	-				B = D = CBR = ES =	Bulk Sma = Unc Envire	disturbed all disturbed disturbed CBF onmental	2	

Contra 5	act No: 863		1	Frial Pi	t Log					Trial Pit No: TP15			
Contra	act:	Moygaddy			Easting:		694131	.238		Date:		16/06/202	1
Locat	ion:	Maynooth, Co. Meat	h		Northing:		739202	2.931		Excavato	or:	JCB 3CX	
Client	:	Sky Castle Ltd			Elevation:		55.37			Logged B	By:	M. Kaliski	
Engin	eer:	ocsc			Dimensior (LxWxD) (ns m):	4.20 x	0.60 x	1.60	Status:		FINAL	
Level	(mbgl)		Stratum Description	on		l	_egend	Level	(mOD) Sam	oles /	Field Tests	Water t Strike
Ocale.	Deptil	TOPSOIL.								, Deptin			
	0.10	IOPSOIL. Soft brown slightly sal content. Sand is fine t subrounded of limesto imestone. Firm becoming stiff gr with high cobble and I Gravel is fine to coars Cobbles and boulders 400mm diameter).	ndy slightly gravelly s o coarse. Gravel is fi one. Cobbles are ang ey brown slightly san ow boulder content. S e, angular to subrout are angular to subrout are angular to subrout s are angular to	wilty CLAY with ne to coarse, ular to subround ady gravelly si Sand is fine to haded of limest bunded of limest m	h low cobbl angular to inded of ity CLAY o coarse. cone. estone (up		[1851] 승지 등 지 수 있는 것 같은 것 같은 것 같은 것 같이 같이 가 있 다. 여러 다.		55.27	, 0.50 1.00	E	BR MK22	
_								- 52.0 —					
3.5 —								-					
								-					
_								- 51.5					
								-					
	\sim	Termination:	Pit Wall Stability:	Groundwater	Rate: Re	mar	ks:			Kev:			
		Obstruction - boulders.					B = D = CBR ES =	Bulk Sma = Une Envir	disturbed all disturbed disturbed Cl conmental	3R			

Contra 5	act No: 863		1	Frial Pi	t Log					Trial Pit No: TP16					
Contra	act:	Moygaddy			Easting:	69458).524		Date:		17/0)6/2021			
Locat	ion:	Maynooth, Co. Meat	th		Northing:	73920	5.916		Excavato	r:	JCB	3CX			
Client		Sky Castle Ltd			Elevation:	58.33			Logged B	y:	M. k	<aliski< td=""><td></td></aliski<>			
Engin	eer:	OCSC			Dimensions (LxWxD) (m): 4.10 ×	0.60 x	2.20	Status:		FINAL				
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	les /	Field	1 Tests	Water		
Scale:	Depth	TOPSOIL	•				Scale:	Depth	n: Depth	Тур	be	Result	Strike		
	0.10 2.10 2.20	Stiff black slightly san and medium boulders coarse, angular to subrou Qbstruction - boulders	ey brown slightly sar e and low boulder co to coarse, angular to s are angular to subro dy slightly gravelly si content. Sand is fine prounded of limeston nded of limestone (u) s. Pit terminated at 2.20	Ity CLAY with to coarse. Gra e. Cobbles ar p to 500mm d	Avelly silty if fine to of limestone. estone (up to high cobble avel is fine to id boulders iameter).	e 게 문제		58.23	3 0.50 1.00 2.20	B	BR .	MK55 MK56			
					-			<u> </u>							
		Termination:	Rate: Rem	l arks:			Key:	<u> </u>							
		Obstruction - boulders.	Pit walls stable.	-				B = D = CBR ES =	Bulk Sma = Uno Envir	distu all dis distur	urbed turbed bed CBR ental				

Contra 58	act No: 863		1	Frial Pi	t Log					Trial Pit No: TP17		
Contra	act:	Moygaddy			Easting:	69396	3.747		Date:		16/06/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:	739114	1.742		Excavator	:	JCB 3CX	
Client	:	Sky Castle Ltd			Elevation:	54.52			Logged B	y:	M. Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m): 4.20 x	0.60 x	1.70	Status:		FINAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Sampl	les / l	Field Tests	Water Strike
Scale:	Deptn	TOPSOIL.					Scale:	Deptr	Deptn	Тур	e Result	
	0.10	Obstruction - boulders	own slightly sandy sl ontent. Sand is fine to prounded of limeston one.	ightly gravelly o coarse. Gra e. Cobbles ar	silty CLAY vel is fine to e angular to			52.82	2 0.50 1.00	ICB	R MK17 MK18	
		Termination	Pit Wall Stability:	Groundwater	Rate: Dom	arks:			Kov			
		Obstruction - boulders.	Pit walls stable.	rate. rem				B = D = CBR = ES = I	Bulk Sma = Und Enviro	disturbed Il disturbed listurbed CBR onmental		

Contra 5	act No: 863		t Log						Trial Pit No: TP18					
Contra	act:	Moygaddy			Easting:	693	940.12	21		Date:		16/	/06/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	739	224.75	55		Excava	tor:	JC	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	55.9	98			Logged	By:	M.	Kaliski	
Engin	eer:	OCSC			Dimensions (LxWxD) (n	s 4.10	0 x 0.6	60 x	2.50	Status:		۶IN	VAL	
Level	(mbgl)		Stratum Description	on		Lege	end Le	vel	(mOD) Sar	nples /	Fie	ld Tests	Water
Scale:	Depth	TOPSOIL.					Sc	ale:	Depth	: Dept	h Ty	ре	Result	Ounce
	2.50	Firm becoming stiff gr CLAY with high cobble coarse. Gravel is fine Cobbles and boulders 400mm diameter).	avelly silty avelly silty fine to of limestone estone (up to	· · · · · · · · · · · · · · · · · · ·	25 55 55 55 55 55 55 55 55 55 55 55 55 5		55.88 54.98 53.48	0.50 1.00 2.50	E ICI	BR	MK11 MK12 MK13			
_					_									
3.5 —				52	2.5 —									
_					_									
_								_						
-														
		Termination: Pit Wall Stability: Groundwater Rate: Rem												
		Strength of soil and boulders.					B = D = CB ES	Bul Sm R = Un = Envi	k dis all d distu ronn	sturbed isturbed urbed CBR nental				

Contra 5	act No: 863		1						Trial Pit No: TP19					
Contra	act:	Moygaddy			Easting:		693876	6.942		Date:		16/06	6/2021	
Locati	ion:	Maynooth, Co. Meat	h		Northing:		739296	6.996		Excavator	:	JCB	3CX	
Client		Sky Castle Ltd			Elevation:		55.71			Logged B	y:	M. Ka	aliski	
Engin	eer:	ocsc			Dimensior (LxWxD) (າs m):	4.00 x	0.60 x	1.90	Status:		FINA	L	
Level	(mbgl)		Stratum Description	on		I	Legend	Level	(mOD) Sampl	es /	Field	Tests	Water
Scale:	Depth	TOPSOIL	•					Scale:	Depth	: Depth	Тур	be I	Result	Strike
	0.10 0.20	Stiff grey slightly sand and low boulder conte coarse, angular to subrou diameter).	ndy slightly gravelly s o coarse. Gravel is fi one. Cobbles are ang tly sandy slightly grav oulder content. Sand ilar to subrounded of lime to subrounded of lime to subrounded of lime tent. Sand is fine to co prounded of limestone (uj 3. Pit terminated at 1.90	ility CLAY with ne to coarse, jular to subrou- velly silty CLA is fine to coa limestone. Co estone (up to - estone (up to - y CLAY with h arse. Gravel i e. Cobbles an o to 400mm d m	angular to inded of Y with high rse. Grave obbles and 400mm		: [중시] 경제 (중시] 중시] 중시] 중시] 중시] 중시] 중시] 중시] 중시] 중시]	55.5	55.61	0.50	ICB B	R	МК04 МК05 МК06	
		Termination:	Pit Wall Stability:	Groundwater	Rate: Re	mar	ks:		I	Key:				
		Obstruction - boulders.					B = D = CBR = ES = I	Bulk Sma Unc Envir	distur all distr disturb onmer	rbed urbed oed CBR ntal				

Contra 5	act No: 863		1	Frial Pi	t Log					Trial Pit No: TP20		
Contra	act:	Moygaddy			Easting:	694084	4.588		Date:		16/06/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	739079	9.517		Excavato	r:	JCB 3CX	
Client	:	Sky Castle Ltd			Elevation:	55.01			Logged B	y:	M. Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m): 3.90 ×	0.60 x	1.90	Status:		FINAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	les /	Field Tests	Water
Scale:	Depth	TOPSOIL.					Scale:	Depth	n: Depth	Тур	be Result	Ounce
	0.10	Firm becoming stiff gr CLAY with high cobbles coarse. Gravel is fine	ndy slightly gravelly s to coarse, angular to tly sandy slightly grav nt. Sand is fine to coa prounded of limeston one.			54.91	1 0.50 1.00	ICB B	R MK19 MK20 MK21			
_	1.90	Destruction - boulders	5					53.11	1			
			Pit terminated at 1.90	m			53.0 — - - - - - - - - - - - - - - - - - - -					
1		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	arks:			Key:			
		Obstruction - boulders.	Pit walls stable.	-				B = D = CBR = ES =	Bulk Sma = Unc Envir	disturbed all disturbed disturbed CBR onmental	1	

Contra 5	act No: 863		٦	t Log							Trial Pit No: TP21			
Contra	act:	Moygaddy			Easting:		694518	8.865		Date:		16/	06/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:		738836	6.591		Excavato	r:	JCI	B 3CX	
Client	:	Sky Castle Ltd			Elevation:		54.89			Logged E	By:	M.	Kaliski	
Engin	eer:	OCSC			Dimension (LxWxD) (I	ns m):	4.00 x	0.60 x	2.90	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		L	_egend	Level	(mOD) Samp	les /	Fie	ld Tests	Water Strike
Scale:	Deptn	TOPSOIL						Scale:	Deptr	Depth	Typ	be	Result	ounto
	2.90	Soft becoming firm brawith low cobble conter coarse, angular to sub subrounded of limesto Stiff grey brown slight cobble and low boulde fine to coarse, angula boulders are angular to diameter).	own slightly sandy sl nt. Sand is fine to co- prounded of limeston one.	elly silty CLA e. Cobbles ar elly silty CLA ne to coarse. nestone. Cob estone (up to	Y with high Gravel is bles and 400mm	· · · · · · · · · · · · · · · · · · ·	장기장기장기장기장기장기장기장기장기장기장기장기장기장기장기장기장기 %기		54.79	0.50 1.00 2.00	B	;	MK31 MK32 MK33	•
											-			
		Termination: Pit Wall Stability: Groundwater Rate: Rer								Kov				
		Obstruction - boulders.					B = D = CBR ES =	Bulk Sma = Uno Envir	t dis all di distu ronm	turbed isturbed irbed CBR nental				

TP01 Sidewall

TP01 Spoil

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP09 Spoil

TP10 Sidewall

TP10 Spoil

TP11 Sidewall

TP11 Spoil

TP12 Sidewall

TP12 Spoil

TP13 Sidewall

TP13 Spoil

TP14 Sidewall

TP14 Spoil

TP15 Sidewall

TP15 Spoil

TP16 Sidewall

TP16 Spoil

TP17 Sidewall

TP17 Spoil

TP18 Sidewall

TP18 Spoil

TP19 Sidewall

TP19 Spoil

TP20 Sidewall

TP20 Spoil

TP21 Sidewall

TP21 Spoil

Appendix 4 Soakaway Test Results

		SOAKAWAY TEST	
Project Refere	nce:	5863	
Contract name	:	Movgaddy	
Location:	-	Maynooth, Co. Meath	
Test No:		TP01	
Date:		16/06/2021	
Ground Condit	tions		
Ground Condi			
	0.10	TORCOIL	
0.00	0.10	Cost has a firm brown slightly condy slightly grouply	
0.10	1.80	Son becoming initi brown slignly sandy slignly gravely	SILY GLAY WILL
1.00	0.10	Stiff grow brown glightly goody glightly grouply gifty CLA	V with high apphla
1.80	2.10	and low boulder content	r with high coople
Remarks:	10		
Obstruction at 2	. i Umbgl.		
Elapsed Time	⊢all of Water	Pit Dimensions (m)	_
(mins)	(m)	Length (m) 4.30 m	
0	1.20	Width (m) 0.60 m	
0.5	1.20	Depth 2.10 m	
1	1.20	Water	
1.5	1.20	Start Depth of Water 1.20 m	
2	1.20	Depth of Water 0.90 m	
25	1 20	75% Full 1 43 m	-
.3	1.20	25% Full 1 88 m	-
35	1.21	75%-25% 0.45 m	_
0.0	1.21	Volume of water (75%-25%) 1 16 m3	_
4	1.21	Area of Drainage 20 59 m2	_
4.3	1.21	Area of Drainage (75% 05%) 6.00 m2	_
5	1.21	Area of Drainage (75%-25%) 6.99 m2	-
6	1.21		_
7	1.21	75% Full N/A min	
8	1.21	25% Full N/A min	
9	1.21	Time 75% to 25% N/A min	
10	1.21	Time 75% to 25% (sec) N/A sec	
12	1.21		
14	1.21	0.00	
16	1.21	0.10	
18	1.22	0.30	
20	1.22	0.40	
25	1.22	0.60	
30	1.22	0.80	
40	1.22		
50	1.22	1.10	
60	1.22	1.20	
75	1.22	1.40	
90	1.22		
120	1.22	1.70	
.=		1.80	
		2.00	
		2.10 0 20 40 60 80	100 120
f =	Fail	or <u>Fail</u>	
	m/min	m/s	

		SOAKAWAY TEST		
Project Refere	nce:	5863		
Contract name	:	Movgaddy		40
Location:		Maynooth, Co. Meath		
Test No:		TP02		
Date:		16/06/2021		
Ground Condit	tions			
From				
0.00	0 10			
0.00	0.00	Soft brown slightly sandy slightly gravel	Ilv silty CLAV with	low cobble content
0.10	1.50	Firm grey brown slightly sandy slightly graver	aravelly eilty CLAY	with high cobble
0.00	1.00	content		with high cobbie
1.50	3.00	Firm becoming stiff arey brown slightly	sandy slightly grav	elly silty CLAY with
1.50	0.00	high cobble and low boulder content	ballay olightly grav	
Bomarke:				
Test completed	at hase of nit			
Flanced Time	Fall of Water	Pit Dimensions (m)		
(mine)		Longth (m)	4.00 m	4
(111115)	(111)		4.00 111	4
0	1.50	Width (m)	0.60 m	
0.5	1.50	Depth	3.00 m	4 1
1	1.50	Water		4
1.5	1.50	Start Depth of Water	1.50 m	4 1
2	1.50	Depth of Water	1.50 m	4
2.5	1.50	75% Full	1.88 m	4 1
3	1.50	25% Full	2.63 m	4 1
3.5	1.50	75%-25%	0.75 m	4 1
4	1.50	Volume of water (75%-25%)	1.80 m3	4 1
4.5	1.50	Area of Drainage	27.60 m2	
5	1.50	Area of Drainage (75%-25%)	9.30 m2	
6	1.50	Time		
7	1.51	75% Full	N/A min	
8	1.51	25% Full	N/A min	
9	1.51	Time 75% to 25%	N/A min	
10	1.51	Time 75% to 25% (sec)	N/A sec	
12	1.51			
14	1.51	0.00		
16	1.51	0.20		
18	1.51	0.40		
20	1.51	0.80		
25	1.51	1.00		
30	1.51	1.20		
40	1.51	1.40		
50	1.51			
60	1.51	2.00		
75	1.51	2.20		
90	1.51	2.40		
120	1.51	2.60		
	-	2.80		
		0 20 40	60 80	100 120
f _	Fail	or Fail		
'-				
	m/min	111/5		

		SOAKAWAY TEST	
Project Refere	nce:	5863	
Contract name	:	Movgaddy	
Location:	-	Maynooth Co Meath	
Test No:			
Data:		16/06/2021	
Dale.	lana	10/00/2021	
Grouna Conai			
From	10	T0000//	
0.00	0.10	TOPSOIL.	
0.10	0.90	Firm brown slightly sandy slightly gravelly silty CLAY	with low cobble and
		boulder content.	
0.90	1.40	Firm brown slightly sandy slightly gravelly silty CLAY	with high cobble and
		medium boulder content.	
Remarks:			
Obstructions at	1.40mbgl.		
Elapsed Time	Fall of Water	Pit Dimensions (m)	
(mins)	(m)	Length (m) 4.20 m	
0	0.50	Width (m) 0.60 m	
0.5	0.50	Depth 1.40 m	—
0.5	0.50		— I
1	0.50		
1.5	0.50	Start Depth of Water 0.50 m	
2	0.51	Depth of Water 0.90 m	
2.5	0.51	75% Full 0.73 m	
3	0.51	25% Full 1.18 m	
3.5	0.51	75%-25% 0.45 m	
4	0.51	Volume of water (75%-25%) 1.13 m3	
4.5	0.51	Area of Drainage 13.44 m2	
5	0.51	Area of Drainage (75%-25%) 6.84 m2	
6	0.51	Time	\neg
7	0.52	75% Full N/A min	
8	0.52		
0	0.52	Z5761 UII 10/A min	
9	0.52	Time 75% to 25% N/A IIIII	
10	0.52	11me 75% to 25% (sec) N/A sec	
12	0.52		
14	0.52	0.00	
16	0.52	0.10	
18	0.52	0.20	
20	0.52	0.30	
25	0.53	0.40	
30	0.53	0.50	
40	0.53	0.60	
50	0.53	0.70	
60	0.54	0.80	
75	0.54	0.90	
90	0.54	1.00	
120	0.54	1.10	
120	0.04	1.20	
		1.30	
		0 20 40 60 8	.0 100 120
	Fail	Eoil	
T =	rall	or <u>raii</u>	
	m/min	m/s	

Project Reference: 5863 Contract name: Maynooth, Co. Meath Location: TP04 Date: T706/2021 Ground Conditions Firm From To 0.00 0.10 TOPSOIL. 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 0.50 2.30 Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Water ingress at 2.00mbgl. 0.5 - Dist saturated and unsuitable for soakaway design. Elapsed Time Fall of Water m 1 - Year 2 - 2.5 - 3.5 - Time Time 3.5 - Time Time 3.5 - Time Time 3.6 - Time Time 3.6 -			SOAKAWAY TE	<u>ST</u>		1	
Contract name: Maynoth, Co. Meath Location: Maynoth, Co. Meath Test No: 17704 Date: 17/06/2021 Ground Conditions Ground Conditions From To 0.00 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 0.50 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Obstruction at 2.40mbgl. Water ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water m 1 - 2.5 - 3.5 - 3.5 - 75% Full m 75% Full NA min 112 - 12 - 12	Project Referen	nce:	5863				
Location: Maymouth, Co. Meath Test No: TP04 Date: 17/06/2021 Ground Conditions From 0.00 0.10 TOPSOIL. 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 0.50 2.30 Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. 2.30 2.40 Stift grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Stift grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Plit Dimensions (m)	Contract name	:	Moygaddy			50-/	
Test No: TP04 Date: 17/06/2021 Ground Conditions From From To 0.00 0.10 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 0.00 2.30 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Obstruction at 2.40mbgl. Water impress at 2.00mbgl - soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water (mins) (m) 1 - 2.5 - 3 - 2.5 - 3.5 - 4.5 - 7 - 8 - 9 - 10 - 2.5 - 3.6 - 7 - 8 - 9 - 110 -	Location:		Maynooth. Co. Meath				
Date: 17/06/2021 Ground Conditions From To 0.00 0.10 TOPSOIL. TOPSOIL. 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild for young slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild for young slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Wild for young slightly gravelly slightly gravelightly slightly gravelly slightly gravelly slightly grave	Test No:		TP04				
Ground ConditionsFromTo0.000.10TOPSOIL.0.100.50Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content.0.502.30Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and low boulder content.2.302.40Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and low boulder content.Remarks:Obstruction at 2.40mbgl.Water ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design.1-1.5-2-2.5-3-2.5-3.5-4-4.5-5-5-6-7-8-9-10-12-14-16-17-18-20-25-30-40-12-13-14-15-16-17-18-20-190-10-12-13-14-15-16-17-	Date:		17/06/2021	17/06/2021			
Prom To 0.00 0.10 TOPSOIL. 0.10 0.50 Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content. 0.50 2.30 Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and low boulder content. 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Materingress at 2.00mbgl. Vater ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design. Image: state stat	Ground Condit	tions	,				
1.011.01.01.00.100.10TOPSOIL.0.100.50Soft brown slightly sandy slightly gravelly silty CLAY with medium cobble content.0.502.30Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and low boulder content.2.302.40Stiff grey slightly gravelly silty CLAY with high cobble and medium boulder content.Remarks:Obstruction at 2.40mbgl.Water ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design.Elapsed Time 1Fall of Water Length (m)102.533.54478778777777777777777777710-12- <td>From</td> <td></td> <td></td> <td></td> <td></td> <td></td>	From						
0:00 0:10 <th< td=""><td>0.00</td><td>0.10</td><td></td><td></td><td></td><td></td></th<>	0.00	0.10					
0.10 0.30 Solid bitwith startly saidly saidly say of ULAT with high cobble content. 0.50 2.30 Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Water ingress at 2.00mbgl - solid saturated and unsuitable for soakaway design. Elapsed Time Fall of Water 1 - 1.5 - 2.5 - 3.5 - 4 - 5.5 - 6 - 7 - 5.5 - 6 - 7 - 7.5 - 6 - 7 - 7.5 - 10 - 12 - 14 - 12 - 14 - 15 - 16 - 17	0.00	0.10	Soft brown slightly sandy slightly ar	avolly cilty (modium cobblo	
0.50 2.30 Firm grey brown slightly sandy slightly gravelly silty CLAY with high cobble and low boulder content. 2.30 2.40 Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: Obstruction at 2.40mbgl. Stiff grey slightly sandy slightly gravelly silty CLAY with high cobble and medium boulder content. Remarks: (mins) (m) 4.20 m 0 - (mins) (m) 4.20 m 0.5 - (mins) (m) 4.20 m 0.5 - (mins) (m) 0.60 m 1 - Depth of Water m 1 2.5 - (month atter) m 1 3.5 - (month atter) m 1 4.5 - 75% Full m Marea of Drainage (75%-25%) m3 77 - - 75% for 25% m2 1 1 10 - -<	0.10	0.50	content	aveny Sity C			
0.30 2.30 2.30 2.30 and low boulder content. and low boulder content. Remarks: Obstruction at 2.400 mg/l soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water (mins) (m) 0 - 0.5 - 1 - 1.5 - 2.5 - 2.5 - 3.5 - 4 - 3.5 - 4 - 75 - 6 - 77 - 75 - 30 - 10 - 12 - 6 - 75% Full N/A min 18 - 20 - 30 - 14 - 16 - 75 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - </td <td>0.50</td> <td>2 30</td> <td>Firm grov brown slightly sandy slight</td> <td>tly gravelly</td> <td>cilty CLAV</td> <td>with high cobble</td>	0.50	2 30	Firm grov brown slightly sandy slight	tly gravelly	cilty CLAV	with high cobble	
Length of Water metal Remarks: Obstruction at 2.40mbgl. Obstruction at 2.40mbgl. Satiff grey slightly gravelly slity CLAY with high cobble and medium boulder content. Elapsed Time Fall of Water (mins) (m) 0 - 0.5 - 1 - 1.5 - 2.2 - 2.5 - 3.5 - 3.5 - 4 - 4.5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 8 - 9 - 114 - 12 - 144 - 16 - 18 - 20 - 25 -	0.50	2.00	and low boulder content	itty graveny		with high coopie	
2.30 2.40 Disting usy analysing yarded and yarded	2.20	2.40	Stiff grov slightly sandy slightly grav	velly silty CI	ΔV with hi	igh cobble and	
Inclusion collect content. Destruction at 2.40mbgl. Water ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water (mins) 0 - 0.5 - 1 - 1.5 - 2.5 - 2.5 - 3.5 - 4 - 4.5 - 5 - 6 - 7 - 76 - 10 - 11 - 25 - 6 - 7 - 76 - 10 - 12 - 14 - 18 - 20 - 212 - 14 - 18 - 20 - 212 -	2.50	2.40	medium boulder content			Igh cobble and	
Intensional Sector 10 (mins) Water ingress at 2.00mbgl - soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water (mins) (m) A 0 -	Pomorko						
Construction at 2-forming. Water ingress at 2.00mbg1 - soils saturated and unsuitable for soakaway design. Elapsed Time Fall of Water (m) Image: model of the matrix of the	Obstruction at 0	40mbal					
Participant Participant Participant Elapsed Time Fall of Water Image fail of Water 0 - 0.60 m 0.5 - 2.40 m 1 - 1 1.5 - 2.40 m 2.5 - 2.40 m 3.5 - 2.40 m 4.5 - m 2.5 - 7% Full m 3.5 - - m 25 - - 7% Full m 7 - 75% -25% - m2 7 - 75% -25% - m2 7 - 75% Full N/A min 25% Full N/A min 10 - - - - 75% for 25% (sec) N/A sec 20 - - - - - -	Water ingress a	40111DYI. t 2 00mbal - a	oils saturated and unsuitable for ass	kaway daala	ar		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Flanced Time	L 2.0011Dgl - S		naway uesi(ун. Г		
(initial field of the second seco				4.00		-	
0 - 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5 - 6 - 7 - 55 - 6 - 7 - 75%< Full	(mins)	(11)		4.20	m		
0.5 - 2.40 m 1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4 - 5 - 6 - 7 - 6 - 77 - 8 - 9 - 114 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 12 - 14 - 25 - 30 - 40 - 50 - 120 - 120 - 120 - 120 - 120 - 120 -	0	-	Width (m)	0.60	m		
1 - 1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 6 - 7 - 8 - 75% Full - Mrea of Drainage - Area of Drainage - 76% Full N/A min 25% Full N/A min 25% Full N/A min 10 - 14 - 16 - 17% co 25% (sec) 14 - 16 - 25 - 30 - 40 - 50 - 90 - 120 - 120 - f F Fail m/min m/min m/s	0.5	-	Depth	2.40	m		
1.5 - 2 - 2.5 - 3 - 3.5 - 4 - 5 - 6 - 7 - 8 - 75% - 7 - 7 - 7 - 76% - 77 - 78 - 79% - 70 - 77 - 78 - 79% - 70 - 75% - 76% - 70 - 75% - 76% - 75% - 710 - 120 - 130 - 40 - 75% - 90 - 120 - 120 - 120	1	-	Water				
2 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 6 - 7.7 - 8 - 9 - 110 - 12 - 14 - 15 - 7.7 - 7.8% Full N/A min 75% Full N/A min 10 - 114 - 120 - 300 - 400 - 50 - 60 - 75 - 90 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -	1.5	-	Start Depth of Water	-	m		
2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 6 - 7 - 7% Full - 7 - 7% Full - 7 - 7 - 7% Full N/A 8 - 7% Full N/A 8 - 7% Full N/A 8 - 7% Full N/A 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 120 - 120 - 120 - 120 - m/min m/s	2	-	Depth of Water	-	m		
3 - m 3.5 - m 3.5 - m 4 - m 4 - m 4 - m 4 - m 4 - m 4 - m 4 - m 4 - m 5 - m3 Area of Drainage - m2 Area of Drainage (75%-25%) - m2 Time - m2 Time - m2 Time - m2 75 - - m 120 - - N/A min 120 - - - 75 - - - 90 - - - 120 - - - m/min m/s m/s -	2.5	-	75% Full	-	m		
3.5 - 4 - 4.5 - 5 - 6 - 7 - 8 - 9 - 10 - 12 - 14 - 16 - 12 - 14 - 16 - 12 - 14 - 16 - 30 - 40 - 50 - 75 - 90 - 120 -	3	-	25% Full	-	m		
4 - 4.5 - 5 - 6 - 7 - 10 - 112 - 114 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 - 120 -	3.5	-	75%-25%	-	m		
4.5 - 5 - 6 - 7 - 8 - 9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 90 - 120 - 120 - f = f = Fail m/min m/s	4	-	Volume of water (75%-25%)	-	m3		
5 - m2 6 - 7 - 8 - 9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 60 - 75 - 90 - 120 - 50 - 60 - 75 - 90 - 120 -	4.5	-	Area of Drainage	-	m2	1	
6 - 7 - 8 - 9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 90 - 120 - 120 - f = f = Fail m/min or Fail m/s	5	-	Area of Drainage (75%-25%)	-	m2		
7 - 8 - 9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 60 - 75 - 90 - 120 -	6	-	Time	Ì		1	
8 - 9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 90 - 120 - f = Fail m/min m/min Fail m/s	7	-	75% Full	N/A	min	1	
9 - 10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 90 - 120 - f = Fail m/min m/min Fail m/s	8	-	25% Full	N/A	min	1	
10 - 12 - 14 - 16 - 18 - 20 - 25 - 30 - 40 - 50 - 90 - 120 - f = Fail m/min or Fail m/s	9	-	Time 75% to 25%	N/A	min	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	-	Time 75% to 25% (sec)	N/A	sec	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-				-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	-	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	-	1				
$\begin{array}{c cccc} \hline & & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \\$	50	-	1				
$\begin{array}{c c} \hline 75 & - \\ \hline 90 & - \\ \hline 120 & - \\ \hline \end{array}$ $f = \underline{Fail}_{m/min} or \underline{Fail}_{m/s}$	60	-	1				
$f = \frac{Fail}{m/min} \text{ or } \frac{Fail}{m/s}$	75	_	1				
$f = \frac{Fail}{m/min} \text{ or } \frac{Fail}{m/s}$	90	-	1				
f = <u>Fail</u> or <u>Fail</u> m/min m/s	120	-	1				
f = <u>Fail</u> or <u>Fail</u> m/min m/s			1				
m/min m/s	f =	Fail	or Fail]			
		m/min	m/s				

		SOAKAWAY TES	<u>ST</u>		
Project Refere	nce:	5863			
Contract name		Movgaddy			
Location:	-	Maypooth Co. Meath			
Teet No:					
Dato:		17/06/2021			
Date.	lione	17/00/2021			
Grouna Conar					
From	10	TODOOIL			
0.00	0.10				
0.10	0.60	Soft brown slightly sandy slightly gra	avelly silty (JLAY with	medium cobble
	4 50	content.		0 H T	
0.60	1.50	Firm brown slightly sandy slightly gr	avelly claye	ey SILT.	
1.50	2.40	Firm grey brown slightly sandy sligh	tly gravelly	silty CLAY	Y with high cobble
		and low boulder content.			
2.40	2.60	Stiff black slightly sandy slightly gra	velly silty C	LAY with I	high cobble and
		medium boulder content.			
Remarks:					
Obstruction at 2	2.60mbgl.				
Water ingress a	<u>it 1.70mbgl - s</u>	oils saturated and unsuitable for soal	kaway desig	gn.	
Elapsed Time	Fall of Water	Pit Dimensions (m)			
(mins)	(m)	Length (m)	3.90	m	
0	-	Width (m)	0.60	m	
0.5	-	Depth	2.40	m	1 1
1	-	Water			
1.5		Start Depth of Water		m	
2		Depth of Water	_	m	-
25	-		-	m	
2.5	-		-		
 	-	25% FUII 75% 05%	-		
3.5	-	73%-23%	-	[]] m 0	
4	-	volume of water (75%-25%)	-	m3 0	
4.5	-	Area of Drainage	-	m2	
5	-	Area of Drainage (75%-25%)	-	m2	
6	-	Time			
7	-	75% Full	N/A	min	
8	-	25% Full	N/A	min	_
9	-	Time 75% to 25%	N/A	min	_
10	-	Time 75% to 25% (sec)	N/A	sec	
12	-				
14	-				
16	-				
18	-				
20	-				
25	-				
30	-				
40	-				
50	-				
60	-				
75	-				
90	-				
120	-				
1	Fail	E E E E E E E E E E E E E E E E E E E	1		
'=	<u>raii</u>				
	m/min	m/s			

|--|

			SOAKAWAY TES	ST		
Project Refere	nce:	5863				
Contract name		Μονα	addy			
Location:	•	Mavn	ooth Co Meath			
Tost No:		TPOG				
Dato:		17/06	/2021			
Date.	lione	17/00	/2021			
Ground Condi						
From	10	TOD				
0.00	0.10	TOPS	SOIL.		21.437	
0.10	0.30	Soft b	prown slightly sandy slightly gra	avelly silty (JLAY.	<u> </u>
0.30	1.30	Firm	grey brown slightly sandy sligh	tly gravelly	silty CLA	r with high cobble
		and lo	bw boulder content.			
1.30	2.00	Firm	brown slightly sandy slightly gr	avelly claye	ey SILT wi	th low cobble
2.00	2.40	Firm	grey brown slightly sandy sligh	tly gravelly	silty CLA	Y with high cobble
	-	and lo	bw boulder content.			
2.40	2.50	Stiff b	black slightly sandy slightly gra	velly silty C	LAY with	high cobble and
		mediu	um boulder content.			
Remarks:						
Obstruction at 2	2.50mbgl.					
Water ingress a	<u>t 2.00mbgl - s</u>	<u>oils s</u> a	turated and unsuitable for soal	<u>kaway desi</u> g	gn.	
Elapsed Time	Fall of Water		Pit Dimensions (m)			
(mins)	(m)		Length (m)	4.40	m	- 1
0	-		Width (m)	0.60	m	-
0.5	-		Depth	2.50	m	-
1			Water	2.00		-
1.5			Start Dapth of Water		-	-
1.5	-		Start Depth of Water	-	[[]	_
2	-		Depth of water	-	m	-
2.5	-		75% Full	-	m	-
3	-		25% Full	-	m	-
3.5	-		75%-25%	-	m	
4	-		Volume of water (75%-25%)	-	m3	
4.5	-		Area of Drainage	-	m2	
5	-		Area of Drainage (75%-25%)	-	m2	
6	-		Time			
7	-		75% Full	N/A	min	
8	-		25% Full	N/A	min	
9	-		Time 75% to 25%	N/A	min	
10	-		Time 75% to 25% (sec)	N/A	sec	1
12	-				•	-
14	-					
16	-					
18	-					
20	-					
25	-					
30	-					
40						
50	_					
60						
00	-					
90 100	-					
120	-					
f =	<u>Fail</u>	or	<u>Fail</u>			
	m/min		m/s			
				1		

		SOAKAWAY TEST	
Project Referer	nce:	5863	
Contract name	:	Movgaddy	4
Location:		Mavnooth, Co. Meath	
Test No:		TP07	
Date:		17/06/2021	
Ground Condit	tions		
From			
0.00	0 10	TOPSOIL	
0.00	0.10	Soft brown slightly sandy slightly gravelly silty CLAV	
0.10	2.40	Firm becoming stiff arey brown slightly sandy slightly ar	avally silty CLAV with
0.20	2.40	high cobble and low boulder content	aveny Sity OLAT With
2.40	2 50	Stiff black slightly sandy slightly gravelly silty CLAY with	high cobble and
2.40	2.00	medium boulder content	ingii cobbio ana
Romarke:			
Obstructions at	2 50mbal		
Flanced Time	Fall of Wator	Pit Dimensions (m)	
(mine)	(m)	Length (m) 4.20 m	
(111115)	(11)	Width (m) 0.60 m	_
0	1.40	Depth	_
0.5	1.40	Deptri 2.50 m	_
1	1.40		_
1.5	1.40	Start Depth of Water 1.40 m	
2	1.40	Depth of Water 1.10 m	_
2.5	1.40	75% Full 1.68 m	
3	1.40	25% Full 2.23 m	
3.5	1.40	75%-25% 0.55 m	_
4	1.40	Volume of water (75%-25%) 1.39 m3	
4.5	1.40	Area of Drainage 24.00 m2	
5	1.40	Area of Drainage (75%-25%) 7.80 m2	
6	1.40	Time	
7	1.40	75% Full N/A min	
8	1.40	25% Full N/A min	
9	1.40	Time 75% to 25% N/A min	
10	1.40	Time 75% to 25% (sec) N/A sec	
12	1.40		
14	1.40	0.00	
16	1.40	0.20	
18	1.40	0.40	
20	1.40	0.60	
25	1.40		
30	1.40		
40	1.40		
50	1.40	1.40	
60	1.40		
75	1.40		
90	1.40	2:00	
120	1.40	2:20	
			100 120
f =	<u>Fail</u> m/min	or <u>Fail</u> m/s	

		SOAKAWAY TEST	
Project Refere	nce:	5863	
Contract name	:	Movgaddy	40 /
Location:	-	Maynooth, Co. Meath	
Test No:		TP08	
Date:		17/06/2021	
Ground Condi	lione	17/00/2021	
Ground Condi			
	0.10	TORSOIL	
0.00	0.10	IOPSOIL.	
0.10	0.80	Solt brown slightly sandy slightly gravely slity CLAY w	Alth medium cobbie
0.00	1.40	CONTENT.	AV with high apphla
0.80	1.40	and modium boulder content	
Demeriker			
Nemarks:	1 10mb al		
Obstructions at			
Liapsed Lime	rall of Water		
(mins)	(m)	Length (m) 3.80 m	/
0	0.60	Width (m) 0.60 m	!
0.5	0.60	Depth 1.40 m	
1	0.60	Water	
1.5	0.60	Start Depth of Water 0.60 m	
2	0.60	Depth of Water 0.80 m	
2.5	0.61	75% Full 0.80 m	
3	0.61	25% Full 1.20 m	
3.5	0.61	75%-25% 0.40 m	
4	0.61	Volume of water (75%-25%) 0.91 m3	
4.5	0.61	Area of Drainage 12.32 m2	
5	0.61	Area of Drainage (75%-25%) 5.80 m2	
6	0.61		
7	0.61	75% Full N/A min	—
8	0.01	25% Full N/A min	—
9	0.01	Time 75% to 25%	
10	0.01	Time 75% to 25% (sec) N/A sec	
10	0.01	Time 7578 to 2578 (sec)	
14	0.61	0.00	
14	0.61	0.00	
10	0.61		
18	0.61	0.20	
20	0.61	0.00	
25	0.62	0.50	
30	0.62	0.60	
40	0.62	0.70	
50	0.62	0.80	
60	0.62	0.90	
/5	0.62	1.00	
90	0.62	1.10	
120	0.62	1.20	
		1.30	
		U 20 40 60 80	100 120
f	Fail	or Fail	
'=	<u>1 all</u>		
	m/min	m/s	

			SOAKAWAY TES	<u>ST</u>		(1	2
Project Referen	nce:	5863					
Contract name	:	Mova	addy			4	1) - J
Location:		Mavn	ooth. Co. Meath			19	
Test No:		TP09					
Date:		17/06	/2021				
Ground Condi	tions						
From	То						
0.00	0.10	TOPS	SOIL.				
0.10	1.60	Firm b high c	pecoming stiff grey brown sligh sobble and low boulder content	ntly sandy s	lightly grav	elly silty C	LAY with
Remarks [.]				•			
Obstructions at	1 60mbal						
Elansed Time	Fall of Water		Pit Dimensions (m)				
(mins)	(m)		Length (m)	4 00	m		
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.60		Width (m)	00. - 0 80	m	1	
0.5	0.00		Denth	1 60	m	1	
1	0.00		Water	1.00		1	
15	0.00		Start Dopth of Water	0 60	m	1	
1.0	0.60		Dopth of Water	1.00	m		
25	0.00			0.95	m		
2.0	0.60		25% Full	1.00	m		
35	0.00		25% -25%	0.50	m		
3.5	0.60		$7570^{-2}25\%$	1.30	m3		
4	0.01		Area of Drainage	14.70	m0		
4.5	0.61		Area of Drainage	14.72	m2	4	
5	0.01		Area of Drainage (75%-25%)	7.00	1112	4	
6	0.61			N.I./ A			
/	0.61		75% Full	N/A	min		
8	0.61		25% FUII	N/A	min		
9	0.61		Time 75% to 25%		min		
10	0.01	ļ	Time 75% to 25% (sec)	N/A	sec		
12	0.61						
14	0.61		0.00				
10	0.61		0.10				
10 20	0.01		0.30				
20	0.60		0.40				
20	0.02		0.50				
30 70	0.02		0.60				
40 50	0.02		0.70				
60	0.02		0.80				
75	0.62		0.90				
90	0.02		1.00				
120	0.62		1.10				
120	0.02	•	1.20				
			1.30				
			1 50				
			1.60		1		
			0 20 40	60	80	100	120
f =	<u>Fail</u> m/min	or	<u>Fail</u> m/s				

		SOAKAWAY TEST	
Project Refere	100.	5863	
Contract name		Movgaddy	
Location:	•	Maynooth Co. Meath	
Tost No:			
Dato:		17/06/2021	
Date.	liono	17/00/2021	
Ground Condi			
	0.10	TORCOIL	
0.00	0.10	IUPSUIL.	with medium colololo
0.10	0.40	Solt brown slightly sandy slightly gravely slity GLAY	with medium coople
0.40	0.40	Content.	arovally ailty CLAX with
0.40	2.40	high cobble and medium boulder content.	graveny sity CLAT with
Remarks:			
Obstruction at 2	.40mbgl.		
Water ingress a	t 2.10mbgl - s	bils saturated and unsuitable for soakaway design.	
Elapsed Time	Fall of Water	Pit Dimensions (m)	
(mins)	(m)	Length (m) 4.30lm	
0	-	Width (m) 0.60 m	
0.5	-	Depth 240lm	
1	_	Water	
1.5		Start Dopth of Water	
1.5	-	Dopth of Water	
2	-		
2.0	-	75% Full - III	
3 2.5	-	25% FUII - III	
3.5	-	75%-25% - III	
4	-	Volume of water (75%-25%) - m3	
4.5	-	Area of Drainage - m2	
5	-	Area of Drainage (75%-25%) - m2	
6	-		
7	-	75% Full N/A min	
8	-	25% Full N/A min	
9	-	Time 75% to 25% N/A min	
10	-	Time 75% to 25% (sec) N/A sec	
12	-		
14	-		
16	-		
18	-		
20	-		
25	-		
30	-		
40	-		
50	-		
60	-		
90	-		
120	-		
f =	<u>⊢all</u> m/min	or <u>Fall</u> m/s	

		SOAKAWAY TEST	
Project Refere	nce:	5863	
Contract name		Movgaddy	
Location:	•	Maynooth Co. Meath	
Tost No:			
Dato:		17/06/2021	
Date.	liono	17/00/2021	
Ground Condi			
	0.10	TORSOIL	
0.00	0.10	Soft brown alightly condy alightly groupelly aity CLAY	
0.10	0.50	Firm becoming stiff grou brown slightly condy slightly group	volly oilty CLAV with
0.50	2.10	high aphble and low boulder content	Veriy Sitty OLAT With
2.10	2.20	Stiff grov brown clightly candy clightly grovely city CLAY	with high cobblo
2.10	2.30	and boulder content	with high coople
Demerikes			
Remarks:	20mbcl		
Obstruction at 2			
vvater ingress a		Dils salurated and unsultable for soakaway design.	
		Fit Dimensions (m)	-
(mins)	(m)		_
0	-	Width (m) 0.60 m	_
0.5	-	Depth 2.30 m	
1	-	Water	
1.5	-	Start Depth of Water - m	
2	-	Depth of Water - m	
2.5	-	75% Full - m	
3	-	25% Full - m	
3.5	-	75%-25% - m	
4	-	Volume of water (75%-25%) - m3	
4.5	-	Area of Drainage - m2	7
5	-	Area of Drainage (75%-25%) - m2	7
6	-	Time	1
7	-	75% Full N/A min	
8	-	25% Full N/A min	
9	-	Time 75% to 25% N/A min	
10	-	Time 75% to 25% (sec) N/A sec	
12	-		
14	-		
16	-		
18	-		
20	-		
25	-		
30	-		
40	-		
50	-		
60	-		
90	-		
120	-		
f =	Fail	or <u>Fail</u>	

|--|

		SOAKAWAY TES	<u>ST</u>		
Project Refere	nce:	5863			
Contract name	1	Movgaddy			40 /
Location:	-	Maynooth Co Meath			
Test No:		TP12			
Date:		17/06/2021			
Ground Condi	tiono	17/00/2021			
Ground Condi					
From 0.00	10	Торсоц			
0.00	0.10				
0.10	0.50	Soft brown slightly sandy slightly gra	velly slity C		
0.50	1.50	Firm grey brown slightly sandy slight	ly gravelly	SIITY CLAY	with high cobble
1 50	1.60	Grey brown silty sandy GRAVEL with	high cobb	e and low	houlder content
1.50	2.20	Firm arey brown slightly sandy slight	ly gravelly	eilty CLAV	with high cobble
1.00	2.20	and low boulder content.	iy ylaveliy	SILY ULAY	
2.20	2.30	Stiff black slightly sandy slightly grav	elly silty C	LAY with h	high cobble and
_		medium boulder content.			-
Remarks:		1			
Obstruction at 2	2.30mbgl.				
Water ingress a	t 1.50mbgl - s	oils saturated and unsuitable for soak	away desig	yn.	
Elapsed Time	Fall of Water	Pit Dimensions (m)			
(mins)	(m)	Length (m)	3.70	m	1
0	-	Width (m)	0.60	m	
0.5		Denth	2.30	m	
1	_	Water	2.00		
15	-	Waler Start Danth of Water			
1.5	-	Start Depth of Water	-	111 	
2	-	Depth of Water	-	m	
2.5	-	75% Full	-	m	
3	-	25% Full	-	m	4
3.5	-	75%-25%	-	m	4 1
4	-	Volume of water (75%-25%)	-	m3	4 1
4.5	-	Area of Drainage	-	m2	
5	-	Area of Drainage (75%-25%)	-	m2]
6	-	Time]
7	-	75% Full	N/A	min	J I
8	-	25% Full	N/A	min]
9	-	Time 75% to 25%	N/A	min]
10	-	Time 75% to 25% (sec)	N/A	sec	7 I
12	-				-
14	-	1			
16	-	1			
18	-	1			
20	-	1			
25	-	1			
30	-	1			
40	-	1			
50	-	1			
60	-	1			
90	-	1			
120	-]			
		_			
f =	Fail	or Fail			
	m/min	m/s			
		. .			

	SOAKAWAY TEST	(d)			
Project Refere	nce:	5863			
Contract name	:	Movgaddy	40 /		
Location:		Maynooth, Co. Meath			
Test No:		TP13			
Date:		16/06/2021			
Ground Condi	tions				
From	То				
0.00	0.10	TOPSOIL			
0.00	1 20	Soft becoming firm brown slightly sandy slightly gravelly	silty CLAY with high		
1 20	1.20	Grev brown silty sandy GBAVEL with high cobble and lov	v boulder content		
1.60	2 10	Firm becoming stiff grey brown slightly sandy slightly gra	velly silty CLAY with		
	2.10	high cobble and low boulder content.			
Remarks [.]					
Obstruction at 2	10mbal				
Water indress a	t 1 80mhal - e	nils saturated and unsuitable for soakaway design			
Flansed Time	Fall of Water	Pit Dimensions (m)			
(mine)	(m)	Length (m) 3 90 m	-		
(11113)	(111)	Width (m) 0.60/m	-		
0.5	-		-		
0.5	-	Deptit 2.10 III			
1	-				
1.5	-	Start Depth of Water - m			
2	-	Depth of Water - m			
2.5	-	75% Full - m			
3	-	25% Full - m			
3.5	-	75%-25% - m			
4	-	Volume of water (75%-25%) - m3	4		
4.5	-	Area of Drainage - m2	4		
5	-	Area of Drainage (75%-25%) - m2			
6	-	Time			
7	-	75% Full N/A min			
8	-	25% Full N/A min			
9	-	Time 75% to 25% N/A min			
10	-	Time 75% to 25% (sec) N/A sec			
12	-		_		
14	-				
16	-				
18	-				
20	-				
25	-				
30	-				
40	-				
50	-				
60					
90	-				
120	-				
f =	<u>⊢ail</u> m/min	or <u>Fall</u> m/s			

	SOAKAWAY TEST							
Project Refere	nce:	5863						
Contract name		Movgaddy	40/					
Location:	-	Maynooth Co Meath						
Test No:								
Date:		17/06/2021						
Cround Condit	liono	17/00/2021						
Ground Condi								
From	10							
0.00	0.10							
0.10	1.60	Soft becoming firm brown slightly sandy slightly gravely	SIITY CLAY WITH IOW					
		cobble content.	V with high schola					
1.60	2.00	Stiff grey brown slightly sandy slightly gravelly slity CLA	Y with high cobbie					
		and low boulder content.						
Remarks:								
Obstructions at	2.00mbgl.							
Elapsed Time	Fall of Water	Pit Dimensions (m)						
(mins)	(m)	Length (m) 3.90 m						
0	1.00	Width (m) 0.60 m						
0.5	1.00	Depth 2.00 m						
1	1 00	Water						
1.5	1.00	Start Dopth of Water 1 00 m	-					
1.5	1.00	Depth of Water 1.00 m						
2	1.00							
2.0	1.00	75% Full 1.25 III	_					
3	1.00	25% Full 1.75 m						
3.5	1.00	75%-25% 0.50 m	_					
4	1.00	Volume of water (75%-25%) 1.17 m3						
4.5	1.00	Area of Drainage 18.00 m2						
5	1.00	Area of Drainage (75%-25%) 6.84 m2						
6	1.00	Time						
7	1.00	75% Full N/A min						
8	1.00	25% Full N/A min						
9	1.00	Time 75% to 25% N/A min						
10	1.00	Time 75% to 25% (sec) N/A sec						
12	1.00							
14	1.00	0.00						
16	1.00	0.10						
18	1.00	0.20						
20	1 00	0.40						
25	1 00	0.50						
20	1.00	0.70						
40	1.00	0.80						
50	1.00	1.00						
50	1.00							
00 75	1.00	1.30						
/5	1.00	1.40						
90	1.00	1.60						
120	1.00	1.70						
		1.80						
		2.00	1					
		0 20 40 60 80	100 120					
f =	Fail	or Fail						
	m/min	m/s						
	111/111111	11// 3						

			SOAKAWAY TE	<u>ST</u>			
Project Refere	000	5863					
Contract name		Mova	addy			E	
	•	Mayn	Moygaddy Very Mosth				
Tost No:		TD15				9	
Dato:		16/06	3/2021				
Date.	liono	10/00	12021				
Ground Condi							
	0 10						
0.00	0.10	TOP	SOIL.			laur aakkla aantant	
0.10	0.50	SOIL	brown slightly sandy slightly gra	avelly slity (JLAY WITH	IOW CODDIE CONtent.	
0.50	1.60	FIIII biab (becoming still grey brown sign	hilly sanuy s +	aignity grav	Veny Silly GLAT With	
		nign d	content of boulder content	ι.			
Remarks:	<u> </u>						
Obstruction at 1	.60mbgl.	.,					
Water ingress a	t 1.60mbgl - s	oils sa	turated and unsuitable for soa	kaway desig	gn.		
Elapsed Time	⊢all of Water		Pit Dimensions (m)			4	
(mins)	(m)		Length (m)	4.20	m]	
0	-		Width (m)	0.60	m	_	
0.5	-		Depth	1.60	m		
1	-		Water]	
1.5	-		Start Depth of Water	-	m		
2	-		Depth of Water	-	m		
2.5	-		75% Full	-	m		
3	-		25% Full	-	m	1	
3.5	-		75%-25%	-	m		
4	-		Volume of water (75%-25%)	-	m3		
4.5	-		Area of Drainage	-	m2	1 1	
5	-		Area of Drainage (75%-25%)	-	m2	1	
6	_		Time				
7	_		75% Full	N/A	min		
8	_		25% Full	N/A	min		
9			Time 75% to 25%	N/A	min		
10	-		Time 75% to 25% (sec)	N/A	Sec	-	
10					000	-	
1/							
14							
18							
20	_						
25							
20	_						
40	_						
50							
50 60	-						
90							
120							
		•					
f =	<u>Fail</u> m/min	or	<u>Fail</u> m/s]			

		SOAKAWAY TEST	
Project Referen	nce:	5863	
Contract name	:	Movgaddy	- 40 - /
Location:		Mavnooth, Co. Meath	
Test No:		TP16	
Date:		17/06/2021	
Ground Condit	tions	,	
From			
0.00	0.10		
0.00	0.10	Firm boooming stiff grov brown slightly condy slightly gro	wolly cilty CLAV with
0.10	2.10	high apphile and low boulder content	aveny sity OLAT with
2.10	0.00	Stiff black slightly sandy slightly gravelly silty CLAY with	high cobble and
2.10	2.20	medium boulder content	nigh cooble and
Demeriker			
Remarks:	0.00mbal		
Costructions at		Dit Dimensione (m)	
Lapsed lime	rall of Water	PIT DIMENSIONS (M)	_
(mins)	(m)	Length (m) 4.10 m	_
0	1.10	Width (m) 0.60 m	
0.5	1.10	Depth 2.20 m	
1	1.10	Water	
1.5	1.10	Start Depth of Water 1.10 m	
2	1.10	Depth of Water 1.10 m	
2.5	1.10	75% Full 1.38 m	-
3	1.11	25% Full 1.93 m	-
3.5	1.11	75%-25% 0.55 m	
4	1 11	Volume of water (75%-25%) 1 35 m3	-
4.5	1 1 1	Area of Drainage 20.68 m2	
4.5 5	1.11	Area of Drainage (75%-25%) 763 m2	-
5	1.11		
0	1.11		-
/	1.11	75% Full IN/A min	
8	1.11	25% Full N/A min	4
9	1.11	Time 75% to 25% N/A min	_
10	1.11	Time 75% to 25% (sec) N/A sec	
12	1.11		
14	1.12	0.00	
16	1.12	0.20	
18	1.12	0.30	
20	1.12	0.50	
25	1.12	0.60	
30	1.12		
40	1.12	1.00	
50	1.12	1.10	
60	1.12		
75	1.12	1.50	
90	1.12	1.60	
120	1.12	1.80	
		2.00	
		2.10	
		0 20 40 60 80	100 120
f =	Fail	or Fail	
	m/min	m/e	
	111/11111	111/0	

			SOAKAWAY TES	<u>ST</u>		a	2
Project Refere	nce:	5863					
Contract name		Movo	addy			4	B_/
Location:	•	Mayn	Aavnooth Co. Meath				
Test No:		TD17				-	
Date:		16/06	3/2021				
Date.	lana	10/00	12021				
Ground Condi		1					
From	10	TOD					
0.00	0.10	TOPS	SOIL.				
0.10	1.70	Soft	becoming firm brown slightly sa	andy slightly	gravelly si	ITY CLAY V	Nith
		mean	um coddie content.				
Remarks:							
Obstructions at	1.70mbgl.						
Elapsed Time	Fall of Water		Pit Dimensions (m)				
(mins)	(m)		Length (m)	4.20	m		
0	0.80	1	Width (m)	0.60	m		
0.5	0.80	1	Depth	1.70	m		
1	0.80	1	Water				
15	0.80	1	Start Depth of Water	0 RU	m		
1.5 9	0.00	1	Denth of Water	0.00	m		
2 25	0.00			1 00	m		
2.0	0.80			1.03			
3	0.80		25% FUII	1.48	111		
3.5	0.80		75%-25%	0.45	m		
4	0.81		Volume of water (75%-25%)	1.13	m3		
4.5	0.81		Area of Drainage	16.32	m2		
5	0.81		Area of Drainage (75%-25%)	6.84	m2		
6	0.81		Time				
7	0.81		75% Full	N/A	min		
8	0.81		25% Full	N/A	min		
9	0.81		Time 75% to 25%	N/A	min		
10	0.81	1	Time 75% to 25% (sec)	N/A	sec		
12	0.81	1					
14	0.81		0.00				
16	0.82		0.10				
18	0.82	1	0.20				
20	0.82	1	0.30				
25	0.82	1	0.40				
30	0.82	1	0.50				—
40	0.82	1	0.60				
50	0.02						—
03	0.02		0.80				
75	0.02		1.00				
00	0.02		1.10				
120	0.02		1.20				
120	0.02		1.30				
			1.40				
			1.50				
			1.60				—
			0 20 40	60	80	100	120
f =	<u>Fail</u> m/min	or	<u>Fail</u> m/s				

			SOAKAWAY TES	<u>ST</u>		1	
Project Refere	nce:	5863					
Contract name	:	Mova	Movgaddy				
Location:	-	Mayn	ooth, Co, Meath			19	2/
Test No:		TP18					
Date:		16/06	(2021				
Ground Condit	lione	10/00/					
Ground Condi		1					
	0.10						
0.00	0.10	10PS	oOIL.				
0.10	1.00	Soft D	rown slightly sandy slightly gra	velly slity C	LAY WITH		e content.
1.00	2.50		she and low boulder content	liy sanuy s	ignity grav		
		nigh c	obble and low boulder content				
Remarks:							
Obstructions at	2.50mbgl.						
Elapsed Time	Fall of Water		Pit Dimensions (m)				
(mins)	(m)		Length (m)	4.10	m		
0	1.30		Width (m)	0.60	m		
0.5	1.30		Depth	2.50	m		
1	1.30		Water			1	
1.5	1.30	1	Start Depth of Water	1.30	m	1	
2	1.30		Depth of Water	1 20	m	1	
25	1.31		75% Full	1.20	m		
2.0	1.01		25% Full	2 20	m	-	
3.5	1.01		75%-25%	0.60	m	-	
5.5 1	1.31		Volume of water (75%-25%)	1.00	m3	-	
4	1.01		Area of Drainage	02.50	m0	-	
4.5	1.31		Area of Drainage	23.50	<u>1112</u>	-	
5	1.31		Area of Drainage (75%-25%)	8.10	m2		
6	1.31					_	
7	1.31		75% Full	N/A	min		
8	1.31		25% Full	N/A	min		
9	1.32		Time 75% to 25%	N/A	min		
10	1.32		Time 75% to 25% (sec)	N/A	sec		
12	1.32	ļĪ					
14	1.32		0.00				
16	1.32		0.20				
18	1.32		0.30				
20	1.32		0.50				
25	1.33		0.70				
30	1.33		0.80				
40	1.33		1.00				
50	1.33		1.20				
60	1.33	1	1.40				
75	1.33	1	1.50				
90	1.33	1	1.70				
120	1.33	1	1.90				
		•	2.10				
			2.20				
			2.40				
			0 20 40	60	80	100	120
f =	Fail	or	Fail				
	m/min		m/s				

		SOAKAWAY TEST	
Project Refere	nce:	5863	
Contract name	:	Movgaddy	
Location:		Maynooth, Co. Meath	
Test No:		TP19	
Date:		16/06/2021	
Ground Condit	tions		
From	To		
0.00	0.10	TOPSOIL	
0.00	0.10	Soft brown slightly sandy slightly gravelly silty CLAY	with low cobble content
0.10	1 70	Firm arey brown slightly sandy slightly gravelly sitty	CLAY with high cobble
0.20	1.70	and medium boulder content	OLAT WITH HIGH CODDIC
1 70	1 90	Stiff arev slightly sandy slightly gravelly silty CLAY w	vith high cobble and low
1.70	1.00	coulder content	
Pomarke			
Obstruction at 1	90mbal		
Water ingrees a	t 1 70mbal a	ile saturated and unsuitable for eackeway decian	
Flanced Time	Eall of Motor	Dit Dimensions (m)	
mine)			— I I
(mins)	(11)		
0	-	Width (m) 0.60 m	
0.5	-	Depth 1.90 m	
1	-	Water	
1.5	-	Start Depth of Water - m	
2	-	Depth of Water - m	
2.5	-	75% Full - m	
3	-	25% Full - m	
3.5	-	75%-25% - m	
4	-	Volume of water (75%-25%) - m3	
4.5	-	Area of Drainage - m2	
5	-	Area of Drainage (75%-25%) - m2	
6	-	Time	
7	-	75% Full N/A min	
8	-	25% Full N/A min	
9	-	Time 75% to 25% N/A min	
10	-	Time 75% to 25% (sec) N/A sec	
12	-		
14	-		
16	-		
18	-		
20	-		
25	-		
30	-		
40	-		
50	-		
60	-		
90	-		
120	-		
f =	<u>Fail</u> m/min	or <u>Fail</u> m/s	

	SOAKAWAY TEST							
Project Referen	nce:	5863						
Contract name	:	Movgaddy	40 /					
Location.	-	Maynooth Co Meath						
Test No:		TP20						
Data:		16/06/2021						
Date.	lione	10/00/2021						
Ground Condi								
From	10	70000						
0.00	0.10	TOPSOIL.						
0.10	0.40	Soft brown slightly sandy slightly gravelly silty CLAY.						
0.40	1.30	Firm grey brown slightly sandy slightly gravelly silty CLA	Y with medium					
		cobble content.						
1.30	1.90	Firm becoming stiff grey brown slightly sandy slightly gra	velly silty CLAY with					
		high cobble and low boulder content.						
Remarks:								
Obstructions at	1.90mbgl.							
Elapsed Time	Fall of Water	Pit Dimensions (m)						
(mins)	(m)	Length (m) 3.90 m	1					
0	1.00	Width (m) 0.60 m	-					
0.5	1.00		-					
0.0	1.00	Weter						
1	1.00		_					
1.5	1.01	Start Depth of Water 1.00 m						
2	1.01	Depth of Water 0.90 m						
2.5	1.01	75% Full 1.23 m						
3	1.01	25% Full 1.68 m						
3.5	1.01	75%-25% 0.45 m						
4	1.01	Volume of water (75%-25%) 1.05 m3						
4.5	1.01	Area of Drainage 17.10 m2						
5	1.01	Area of Drainage (75%-25%) 6.39 m2						
6	1 02	Time	-					
7	1.02	75% Full N/A min	-					
7 Q	1.02		-					
0	1.02	$\frac{25}{6} \frac{100}{100} \frac{100}{$	-					
9	1.02	Time 75% to 25% N/A IIIII	_					
10	1.02	Time 75% to 25% (sec) N/A sec						
12	1.02							
14	1.02							
16	1.02	0.20						
18	1.03	0.30						
20	1.03	0.50						
25	1.03	0.60						
30	1.03	0.70						
40	1.03	0.90						
50	1.03	1.00						
60	1.03	1.20						
75	1.03							
90	1.00	1.50						
120	1.00	1.60						
120	1.05	1.70						
		1.90	100 120					
f =	Fail	or <u>Fail</u> m/s						
		III/3						

		SOAKAWAY TEST
Project Referen	ice:	5863
Contract name	:	Movgaddy
Location:	•	Maynooth Co Meath
Tost No:		
Data:		16/06/2021
Dale.		10/00/2021
Ground Condi		I
From	10	70000
0.00	0.10	
0.10	1.80	Soft becoming firm brown slightly sandy slightly gravelly silty CLAY with low
		cobble content.
1.80	2.90	Stiff grey brown slightly sandy slightly gravelly silty CLAY with high cobble
		and low boulder content.
Remarks:		
Obstruction at 2	.90mbgl.	
Water ingresses	at 2.60mbgl a	and 2.90mbgl - soils saturated and unsuitable for soakaway design.
Elapsed Time	Fall of Water	Pit Dimensions (m)
(mins)	(m)	Length (m) 4.00 m
0	-	Width (m) 0.60 m
0.5	-	Depth 2.90 m
1	-	Water
15	_	Start Depth of Water
1.5	-	Depth of Water m
2	-	
2.5	-	
3	-	25% FUII - M
3.5	-	75%-25% - M
4	-	Volume of water (75%-25%) - m3
4.5	-	Area of Drainage - m2
5	-	Area of Drainage (75%-25%) - m2
6	-	Time
7	-	75% Full N/A min
8	-	25% Full N/A min
9	-	Time 75% to 25% N/A min
10	-	Time 75% to 25% (sec) N/A sec
12	-	
14	-	
16	-	
18	-	
20	-	
25	-	
30	-	
40	_	
50	_	
60	-	
90 90	-	
120		
f =	<u>⊢all</u> m/min	or <u>Fall</u> m/s

Appendix 5 Dynamic Probe Logs

Contract No: 5863	Dynamic Probe Log								lo: 1
Contract:	Moygaddy		E	Easting:	694395.69	93	Date Started:	21/06/2021	
Location:	Maynooth, Co. Me	eath	1	Northing:	739790.4	16	Logged By:	E. Magee	
Client:	Sky Castle Ltd		E	Elevation:	62.17		Scale:	1:25	
Engineer:	OCSC		F	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	-		Pro	be				1	
0	5			0	25		35		(1100)
1	7								62.0 —
		9							-
0.5	<u>ع</u>	8							-
		13		20					01.5 —
1.0				20					-
		10							 61.0
		10							-
1.5 —	4	8							-
		13							60.5 —
		13							_
2.0		10							_
		12							60.0 —
2.5 -				22					-
_									- 59.5 —
-									-
3.0									-
-									59.0 —
-									_
3.5 —									-
									58.5 — _
-									-
4.0									- 58.0
-									-
- 4.5 —									_
-									- 57.5 —
	Te	ermination:	I	Probe Details	;	Remarks			
(A)	Depth:	Reason:	Туре:	Mass	Drop:				
	2.40m	Obstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863	Dynamic Probe LogProbe DP1								lo: 2
Contract:	Moygaddy		I	Easting:	693990.19	98	Date Started:	22/06/2021	
Location:	Maynooth, Co. Mea	th	1	Northing:	739586.78	39	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	58.63		Scale:	1:25	
Engineer:	ocsc		I	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40 45	Pro	be		20	25	1	
0	5								(1100)
	4 6 5 4 3 4	10							58.5 — - - 58.0 — -
1.0	5	11							-
	5								57.5 — _
1.5	5 7 7 4 3								 57.0 —
	7						35		-
2.0 -									- 56.5 —
_									-
2.5 —									-
									56.0
-									-
3.0									- 55.5 —
									-
- 3.5 —									-
-									55.0 —
_									-
4.0 -									- 54.5 —
_									-
- 4.5 —									-
-									54.0 —
									_
	Terr	nination:		Probe Details	<u>.</u>	Remarka	 		
	Depth:	Reason:	Туре:	Mass	Drop:	i torriarită.			
	2.00m O	bstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863	Dynamic P	robe L	og		Probe No: DP16
Contract:	Moygaddy	Easting:	694488.048	Date Started:	24/06/2021
Location:	Maynooth, Co. Meath	Northing:	739589.540	Logged By:	E. Magee
Client:	Sky Castle Ltd	Elevation:	60.82	Scale:	1:25
Engineer:	OCSC	Rig Type:	Competitor 130	Sheet No:	Sheet 1 of 1
Depth (m)	P	robe	25 30	35	Level (mOD)
					60.5
1.0	9 6		25		
1.5	15 15 10 11 11 11 15 15 15 15 15 15 15	,			- 59.5 -
2.0	Image: state				
2.5 -				35	- - 58.5 - -
3.5 -					57.5 — - -
4.0					57.0
- - - 4.5 -					
	Termination:	Probe Details	Remarks	8:	
	Depth: Reason: Type: 2.20m Obstruction - boulders. DPH	Mass 50kg	Drop: 500mm		

Contract No: 5863	Dynamic Probe Log						
Contract:	Moygaddy	Easting:	694589.076	Date Started:	24/06/2021		
Location:	Maynooth, Co. Meath	Northing:	739587.354	Logged By:	E. Magee		
Client:	Sky Castle Ltd	Elevation:	60.73	Scale:	1:25		
Engineer:	ocsc	Rig Type:	Competitor 130	Sheet No:	Sheet 1 of 1		
Depth	Г 40 4F	Probe	05 00	25	Level		
0		20		35	(1100)		
1					60.5 -		
	4				-		
0.5	5				-		
	<u>+</u> 6				60.0 —		
10-					-		
	7				-		
	17 12				59.5 -		
1.5	10				-		
	10				- 59.0		
	p 12				-		
2.0	10 10						
	13 15				- 58.5 –		
				35	; -		
2.5 —					-		
					58.0 —		
30					-		
-					-		
-					57.5 -		
3.5 —					-		
-					57.0		
-							
4.0							
					56.5 -		
					-		
4.5 —							
_					56.0 —		
					-		
	Termination:	Probe Details	S: Remar	<s:< td=""><td></td></s:<>			
	Depth: Reason: Typ 2.40m Obstruction - boulders DP	e: Mass H 50kg	Drop: 500mm				

Contract No: 5863	Dynamic Probe Log								lo: 2
Contract:	Moygaddy			Easting:	693990.0 ⁷	17	Date Started:	22/06/2021	
Location:	Maynooth, Co. Meath			Northing:	739487.25	50	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	58.16		Scale:	1:25	
Engineer:	OCSC			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40 45	Pro	be		00	1		
0			2		25		35		(1100)
	3								58.0 —
0.5	4								-
	3 3								- 57.5 —
2	5								-
1.0	5								-
	8								57.0 —
15	8	11							-
	8	10							- 56.5 —
	7 5								-
2.0							35		-
_									56.0
-									-
2.5 —									- 55.5
-									-
3.0									-
-									55.0 —
-									-
3.5 —									-
_									54.5 —
4.0									_
-									 54.0
_									-
4.5 —									-
									53.5 — -
	Termir	ation:	-	Probe Details	S:	Remarks:			
	Depth: 2.00m Obs	Reason: truction - boulders	DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863	Dynamic Probe Log							Probe N	o: 3
Contract:	Moygaddy			Easting:	694089.76	64	Date Started:	22/06/2021	
Location:	Maynooth, Co. Mea	ith		Northing:	739487.20)8	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	58.44		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	5	40 15	Pro	obe	25	20	25	1	
									58.0 — - 57.5 — - 57.0 —
							35		- - - 56.5 - -
- - 2.5 - - -									- 56.0 — - -
3.0									- 55.5 — - - -
3.5									55.0 — – – 54.5 —
4.0									 54.0
-									- - 53.5 —
	Terr	mination:		Probe Details	:	Remarks:			
	Depth: 1.70m O	Reason: Obstruction - boulders.	Type: DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863	Dynamic Probe LogProbe No:DP27							
Contract:	Moygaddy	Easting:	694586.781	Date Started:	24/06/2021			
Location:	Maynooth, Co. Meath	Northing:	739491.852	Logged By:	E. Magee			
Client:	Sky Castle Ltd	Elevation:	58.59	Scale:	1:25			
Engineer:	OCSC	Rig Type:	Competitor 130	Sheet No:	Sheet 1 of 1			
Depth		Probe	25 20	25	Level			
0	11 10 10 10 10				58.5			
1.0	7 5 6 5 5 5 10							
1.5	14 14 14 14 12 3 10							
2.0	β	20						
2.5	11 12 12 12 10 12 10 12 11 12 10 14		28					
3.5 -	Image: constraint of the second sec	20 23		35	55.5 — - - - -			
-					55.0 — - -			
4.0					54.5			
4.5								
	Termination:	Probe Details:	Remarks:					
	Depth: Reason: Typ 3.40m Obstruction - boulders. DF	De: Mass PH 50kg	Drop: 500mm					

Contract No: 5863	Dynamic Probe Log								lo: 9
Contract:	Moygaddy			Easting:	694780.80)2	Date Started:	24/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739491.93	34	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	56.47		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	5	10 15	Pi	robe	25	20	25		
(m)			18				35		(mOD)
3.5									53.0 — _ _ _
4.0									52.5 — _ _ _
4.5									52.0 — - - -
	Donth	Termination:	Timer	Probe Details	S: Dron:	Remarks:	:		
	1.40m	Reason: Obstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863	Dynamic Probe Log							Probe N	lo: 6
Contract:	Moygaddy			Easting:	694190.23	31	Date Started:	22/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739385.9	57	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	58.35		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	г. г.	40 45	Pro	obe	05	20	25		
0	5		2			30	35		(1100)
1	5								-
	5								58.0 —
0.5	4 5								-
		10				30			- 57.5 —
1.0				20	25				-
				20					-
			19	20					 57.0
1.5					25		35	i	-
_									-
									56.5 — -
-									-
									-
- 2.5 —									
									-
-									- 55.5 —
3.0									-
-									-
-									55.0 —
3.5 —									-
									-
4.0									54.5 —
									-
									- 54.0 —
4.5 —									-
									-
									53.5 —
		Termination:		Probe Details	5:	Remarks			
	Depth:	Reason:	Туре: ПРН	Mass 50kg	Drop: 500mm				

Contract No: 5863	Dynamic Probe Log								lo: 7
Contract:	Moygaddy			Easting:	694288.45	56	Date Started:	22/06/2021	
Location:	Maynooth, Co. Me	eath		Northing:	739387.75	53	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	58.62		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40 45	Pro	obe		20	25		
0	5		2						(IIIOD) =
1	3								
0.5	3								_
	6 5								
	6								-
1.0	4	8							-
		9	18						57.5 — -
				22	26				-
1.5			16	20					 57.0
			16				35	i	-
2.0									-
-									56.5 — _
									-
2.5 —									- 56 0
									-
3.0									-
-									55.5 —
									_
3.5 —									-
_									55.0
-									-
4.0									- 54.5 —
									-
4.5 —									-
									54.0 —
									-
	Те	ermination:		Probe Details	S:	Remarks:			
	Depth:	Reason:	Туре:	Mass	Drop:				
	1.90m	Upstruction - boulders.	DPH	SUKg	500mm				

Contract No: 5863	Dynamic Probe Log						
Contract:	Moygaddy	Easting:	694486.826	Date Started:	24/06/2021		
Location:	Maynooth, Co. Meath	Northing:	739390.243	Logged By:	E. Magee		
Client:	Sky Castle Ltd	Elevation:	58.25	Scale:	1:25		
Engineer:	ocsc	Rig Type:	Competitor 130	Sheet No:	Sheet 1 of 1		
Depth	F 40 45	Probe	05 20	25	Level		
		20			58.0		
2.0	5 7 11 11 11 13 14			35	56.5		
2.5					- - - 55.5 - -		
3.5					 55.0 		
4.0					54.5		
- - 4.5 -					54.0		
	Termination:	Probe Details Mass	E Remarks	:			
	2.30m Obstruction - boulders. DPH	50kg	500mm				

Contract No: 5863		Dynamic Probe Log DP4								lo: D
Contract:	Moygaddy				Easting:	694569.04	43	Date Started:	24/06/2021	
Location:	Maynooth, Co.	Meath			Northing:	739386.6	11	Logged By:	E. Magee	
Client:	Sky Castle Ltd				Elevation:	54.78		Scale:	1:25	
Engineer:	ocsc				Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth				Pro	obe				1	Level
0	5	1	0 15	2		25	30	35		(1100)
2										
	3									
0.52										_
1.0	3									
										-
2										53.5 —
1.5	6									_
		8						35		_
_										53.0 —
2.0										
_										- 52.5 -
_										-
2.5 —										_
-										
3.0										
_										-
_										51.5 —
3.5 —										_
_										-
_										51.0
4.0										-
_										
-										_
4.5 -										_
										50.0 —
	Denth [.]	Termina	tion: Reason [.]	Type	Probe Detail	s: Drop:	Remarks			
(🐒)	1.80m	Obstru	uction - boulders.	DPH	50kg	500mm				

Contract No: 5863	Dynamic Probe Log						
Contract:	Moygaddy		Easting:	694691.616	Date Started:	23/06/2021	
Location:	Maynooth, Co. Meath		Northing:	739389.831	Logged By:	E. Magee	
Client:	Sky Castle Ltd		Elevation:	59.36	Scale:	1:25	
Engineer:	OCSC		Rig Type:	Competitor 13	30 Sheet No:	Sheet 1 of 1	
Depth	5 10	15	Probe	25	20 25	Level	
(m) 0 0 0.5 	5 10 4 5 6 3 4 5 6 3 4 5 6 11 11 7 10 11 11 11 11 11 11 11 11 11	15 16 16 17 3	20		30 35	(mOD) 	
	Iermination: Depth: Reason: 1.80m Obstruction - box	Ilders. DP	Probe Details e: Mass H 50kg	s: Rer Drop: 500mm	marks:		

Contract No: 5863		Dynamic Probe Log							lo: 4
Contract:	Moygaddy			Easting:	693788.258	3	Date Started:	18/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739285.161		Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	56.04		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competitor	130	Sheet No:	Sheet 1 of 1	
Depth		10	Pro	obe	0.5	00			
0	5		2		25	30	35		56.0
0.5	3 5 6 4								- - - 55.5 -
	3								-
1.0	3								- 55.0
2	5								-
15	4								-
	4	р							54.5 — _
				23	2	8			-
2.0					25		35	;	54.0 —
-									-
2.5 —									- 53.5 —
_									-
3.0									- 53.0
_									-
-									-
3.5 -									52.5 — —
_									_
4.0									- 52.0 —
_									-
4.5 —									- 51.5 —
_									-
_									
		Termination:		Probe Details:	R	emarks:			
	Depth:	Reason:	Type:	Mass	Drop:				
	∠.∠∪m	Unstruction - Doulders.		oukg	SOOULUL				

Contract No: 5863		Dynamic Probe Log							lo: 6
Contract:	Moygaddy			Easting:	694430.38	36	Date Started:	23/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739324.23	35	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	53.90		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	E	10 15	Pro	obe	25	20	25		
	5 5 6 6 6 6 6 5 3	7							
							35	i	52.5 — - - 52.0 —
2.5 -									- - 51.5 — - - -
3.0									51.0 — - - 50.5 —
3.5									 50.0
		Termination:		l Probe Details	:	Remarks:			
	Depth: 1.80m	Reason: Obstruction - boulders.	Type: DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863		Dynamic Probe Log							lo: B
Contract:	Moygaddy		I	Easting:	694590.1 ²	16	Date Started:	23/06/2021	
Location:	Maynooth, Co. N	Veath		Northing:	739288.6	13	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	59.21		Scale:	1:25	
Engineer:	ocsc		I	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		10 45	Pro	obe	05	20	25		
0	5		2	0	25	30	35		(1100)
0.5	5 5 5 3								
	4								58.5 — -
1.0	[↑] 6								
	5	12							 58.0
							35		-
1.5 —									-
-									57.5 —
2.0									_
									 57.0
									-
2.5 —									-
-									56.5 —
3.0									-
-									 56.0
-									-
3.5 —									-
									55.5 —
4.0									-
									- 55.0 —
-									-
4.5 -									-
-									54.5 — _
									-
		Termination:	-	Probe Details	s:	Remarks			
	Depth:	Reason: Obstruction - boulders	Туре:	Mass 50kg	Drop: 500mm				

Contract No: 5863		Dynamic Probe Log							lo: 1
Contract:	Moygaddy			Easting:	693890.12	21	Date Started:	18/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739187.5	54	Logged By:	E. Magee	
Client:	Sky Castle Ltd	I		Elevation:	55.56		Scale:	1:25	
Engineer:	OCSC			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15	Pr	obe	25	20	25		
1									55.5 -
2									-
	4	8							-
0.5			17						55.0 —
			10	20					-
1.0				21	24				_
					24		35		54.5 —
_									_
- 15 -									_
-									54.0 —
_									-
2.0									-
_									53.5 — _
									-
2.5 —									_
_									53.0 —
_									-
3.0									-
-									52.5 -
_									_
3.5 —									- 52 0
-									-
-									_
4.0									- 51.5 —
-									-
-									_
4.5 —									- 51.0 —
									-
									_
		Termination:		Probe Details	5:	Remarks			
(A)	Depth:	Reason:	Туре:	Mass	Drop:	. ternanto.			
	1.20m	Obstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynamic Probe Log							lo: 2
Contract:	Moygaddy			Easting:	693984.69	93	Date Started:	18/06/2021	
Location:	Maynooth, Co. Mea	th		Northing:	739184.9	50	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	56.07		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40	Pro	obe		00		1	
0	5		2	0	25	30	35		(IIIOD) 56.0 —
0.5	3 6 5								- - - 55 5
	3 3 4								-
1.0	7								 55.0
					26	28			-
							35		-
1.5 -									54.5 —
									-
2.0									
-									- 04.0
-									_
2.5 —									- 53.5 —
-									-
3.0									-
-									53.0 —
									-
3.5 —									- 52.5 —
_									-
									-
4.0 -									52.0 —
_									-
- 4.5 —									-
-									51.5 —
-									_
	Terr	mination:		Probe Details	3:	Remarks	<u> </u>		
(A)	Depth:	Reason:	Туре:	Mass	Drop:				
	1.40m C	bstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynar	nic Pı	robe L		Probe N	lo: 5		
Contract:	Moygaddy			Easting:	694250.67	76	Date Started:	18/06/2021	
Location:	Maynooth, Co. M	leath		Northing:	739180.87	73	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	51.64		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	-		Pro	obe					Level
			2		25	30	35		51.5 — -
0.5	3 4 5 4 4 4								- 51.0 -
1.0	3 3 4 5 6								- 50.5 — -
1.5	7 7 	9 10 11							 50.0
2.0		12	19						-
-							35	i	49.5 — _ _
2.5 — _ _									 49.0
3.0									
									40.3 -
3.5									 48.0 -
4.0									- 47.5 —
- - 4.5 -									-
									47.0 — - -
		ormination:		Proba Dataila		Derrer			
	Depth:	Reason:	Туре:	Mass	Drop:	Remarks:			
	2.20m	Obstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dyna	mic P	robe Log				Probe No: DP56	
Contract:	Moygaddy			Easting:	694409.93	31	Date Started:	21/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739184.7	74	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	55.98		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	г	10 15	Pr	obe		20	25	1	
0			2						(1100)
	5								-
0.5	6	10							- 55.5 —
	6	9							-
	6								-
1.0	4 5								55.0 —
	4								_
		12							_
1.5		12							54.5 — -
		12					35	i	-
- 20									- 54.0 —
									-
_									_
2.5 —									53.5 —
_									_
-									-
3.0 -									53.0
_									-
- 3.5 -									- 52.5 —
_									-
_									-
4.0									52.0 —
_									=
_									-
4.5 —									51.5 — -
									-
	Denth	Termination:	Truck	Probe Details	S:	Remarks			
(\$)	Depth: 1.80m	Reason: Obstruction - boulders.	DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863		Dynar	nic P	robe L		Probe N	lo: 7		
Contract:	Moygaddy			Easting:	694513.64	46	Date Started:	23/06/2021	
Location:	Maynooth, Co. Mea	ath		Northing:	739200.8	14	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	58.11		Scale:	1:25	
Engineer:	OCSC			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	r.	40 45	Pro	obe		20	25	1	
0			2		25				58.0-
1	4								-
	4								_
0.52	3								
	4								-
1.0		9							-
	7	13							57.0 —
	7								_
1.5	7	14							-
	6								56.5 —
	5								-
2.0	5								- 56.0 —
	/	1	6						-
25				23			35	i	-
									55.5 —
_									_
3.0									_
_									55.0 —
_									-
3.5 —									
_									-
-									_
4.0 -									- 54.0 —
_									-
- 4.5 —									_
_									53.5 —
_									-
	T	rmination:		Proho Dotailo		Domanta			
	Depth:	Reason:	Туре:	Mass	Drop:	TREINALKS:			
	2.50m C	Dbstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynamic Probe Log							
Contract:	Moygaddy		I	Easting:	693991.06	61	Date Started:	18/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739083.75	55	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	53.29		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	E	10 15	Pro	obe	25	20	25		
		8 10 10 11					35		53.0 — - 52.5 — - -
1.0									- - 52.0
- 1.5 - - -									- - 51.5 -
2.0									 51.0
2.5 -									 50.5 -
- - - 3.5 -									 50.0
									_ 49.5 — _
									- 49.0 — -
+									- - 48.5 — -
		Termination:		Probe Details	6:	Remarks			
	Depth: 0.90m	Reason: Obstruction - boulders.	Type: DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863		Dynamic Probe Log							
Contract:	Moygaddy		I	Easting:	694185.44	43	Date Started:	18/06/2021	
Location:	Maynooth, Co. N	leath	I	Northing:	739087.74	12	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	49.21		Scale:	1:25	
Engineer:	OCSC		ł	Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth (m)	5	10 15	Pro	be	25	20	25		
				<u> </u>					49.0 — – – – –
	6 5								48.5 — - - - 48.0 —
1.5	3 3 	9 10 10 10							- - - 47.5 -
2.0				20			35		 47.0
- 2.5									- - 46.5 — -
3.0									- - 46.0
3.5									- 45.5 — -
4.0									 45.0 -
- U.U. 									
		Termination:	- I	Probe Details	S:	Remarks:			
	2.30m	Reason: Obstruction - boulders.	DPH	Mass 50kg	Drop: 500mm				

Contract No: 5863		Dynamic Probe Log							lo: 3
Contract:	Moygaddy			Easting:	694290.24	10	Date Started:	18/06/2021	
Location:	Maynooth, Co.	Meath		Northing:	739085.76	62	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	55.96		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	r 130	Sheet No:	Sheet 1 of 1	
Depth	5	10 15	Pro	obe	25	20	25		
(m)	5 				25	30 30 30	35		(mOD)
									54.0 — - - - - - - - - - - - - - - - - - - -
4.5									
	Denth:	Termination:	Type:	Probe Details	: Drop:	Remarks:			
	1.10m	Obstruction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynamic Probe Log							
Contract:	Moygaddy			Easting:	694691.10)1	Date Started:	22/06/2021	
Location:	Maynooth, Co.	. Meath		Northing:	738989.2	16	Logged By:	E. Magee	
Client:	Sky Castle Ltd	l		Elevation:	56.20		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40 45	Pr	obe		20	25		
					25				(1100)
_									56.0 —
-									_
-									
_									55.5 —
1.0									_
_									55.0 —
_									_
1.5 —									_
_									54.5 —
2.0									_
-									
-									_
2.5 —									_
_									53.5 — _
3.0									_
_									 53.0
_									-
3.5 —									-
_									52.5 — _
4.0									-
_									- 52 0
_									-
4.5 —									-
_									51.5 —
	Dent	Termination:	T	Probe Details	: 	Remarks:	:		
(\$)	5.00m	Reason: Obstruction - boulders.	DPH	Mass 50kg	500mm				

Contract No: 5863	Dynamic Probe Log							Probe No: DP76	
Contract:	Moygaddy			Easting:	694188.862		Date Started:	18/06/2021	
Location:	Maynooth, Co. Meath			Northing:	738882.936 L		Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	48.76 Scale:		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth	Pr			obe	25 30 35				
									48.5
	p 7 9 9 9	12			25		35	;	 47.0 - -
- - 2.5 - -									- 46.5 — - -
3.0									46.0
- - - 3.5 - -									45.5 — - -
4.0									45.0 — - -
- - - 4.5 -									 44.5 -
									 44.0
	Termination:			Probe Details	: Drop:	Remarks:	:		
	2.10m Obstru	iction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynar	nic Pi	robe L	og			Probe N	lo: 3
Contract:	Moygaddy			Easting:	694392.5	33	Date Started:	21/06/2021	
Location:	Maynooth, Co. Meath			Northing:	738890.20	01	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	54.87		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth			Pro	obe					Level
0	5 10	15	2	20	25	30	35		(1100)
0.5	5 4 4 3								 54.5
	3								
1.02	-								-
2	3								-
	-								53.5 —
1.5									_
		1	6						-
2.0	T		17		25				53.0
		14			23				_
		14					35	5	- 52.5 —
2.5 —									-
-									-
- 3.0									52.0 —
_									-
_									- 51.5 —
3.5 —									-
_									-
									51.0
4.0 -									-
									- -
- 4.5 —									
-									-
-									- 50.0 —
	Terminatio	on:		Probe Details	:	Remarke			
	Depth:	Reason:	Туре:	Mass	Drop:				
	2.40m Obstruc	ction - boulders.	DPH	50kg	500mm				

Contract No: 5863		Dynan	nic Pı	robe L	og			Probe N	lo: 2
Contract:	Moygaddy		I	Easting:	694286.00)7	Date Started:	18/06/2021	
Location:	Maynooth, Co. Mea	ath		Northing:	738783.74	40	Logged By:	E. Magee	
Client:	Sky Castle Ltd		I	Elevation:	47.18		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth		40 45	Pro	obe		20	25		
0			2		25				(1100)
									47.0 —
	6 6								-
0.5	4								-
	3								40.5 —
1.0	3								_
									46.0 —
									-
1.5	7								-
		11							45.5 —
							35	5	-
-									-
									45.0
- 2.5 —									-
									- 44.5 —
_									-
3.0									-
									44.0 —
_									-
3.5 —									-
									43.5 — -
4.0									-
									- 43.0 —
_									-
4.5 -									-
									42.5 —
									_
	Terr	mination:		l Probe Details	:	Remarks:	I_		
	Depth:	Reason:	Type:	Mass	Drop:				
	1.90m O	postruction - boulders.	DPH	5Ukg	500mm				

Contract No: 5863		Dynan	nic Pı	robe L	og			Probe N	lo: 3
Contract:	Moygaddy			Easting:	694396.54	49	Date Started:	21/06/2021	
Location:	Maynooth, Co. Meath			Northing:	738786.80	09	Logged By:	E. Magee	
Client:	Sky Castle Ltd			Elevation:	53.35		Scale:	1:25	
Engineer:	ocsc			Rig Type:	Competito	or 130	Sheet No:	Sheet 1 of 1	
Depth			Pro	obe					Level
0	5 10	15	2	0 	25	30	35		(mob) -
1	3								-
	7	13							53.0 —
0.5			17	21					-
		15							-
1.0 —		12							52.5 —
		1	18						-
		14 13							- 52.0 —
1.5	10	12							-
							35		-
-									51.5 —
2.0									_
-									-
- 2.5 -									51.0 —
									-
_									- 50.5 —
3.0									-
-									-
-									50.0 —
3.5 —									_
-									-
									49.5 — -
4.0									-
_									- 49.0 —
- 4.5 —									_
-									-
									- 48.5 —
	Termination:	<u> </u>		l Probe Details	:	Remarks	<u> </u>		
1	Depth: Re	ason:	Туре:	Mass	Drop:				
	1.70m Obstructic	on - boulders.	DPH	50kg	500mm				

Appendix 6 Geotechnical Soil Laboratory Test Results

Classification Tests in accordance with BS1377: Part 4

Client	Sky Castle Ltd.
Site	Moygaddy
S.I. File No	5863 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	12th July 2021

Hole ID	Depth	Sample	Lab Ref	Sample	Natural	Liquid	Plastic	Plastic	Min. Dry	Particle	%	Comments	Remarks C=Clay;
		No	No.	Туре	Moisture	Limit	Limit	Index	Density	Density	passing		M=Silt Plasticity:
					Content	%	%	%	Mg/m^3	Mg/m^3	425um		L=Low; I=Intermediate;
					%				C	C			H=High; V=Very High;
													E=Extremely High
TP01	1.00	MK15	21/856	В	17.6	32	18	14			47.3		CL
TP04	1.00	MK44	21/860	В	14.3	38	20	18			60.7		CI
TP06	1.00	MK47	21/863	В	15.6	37	20	17			63.5		CI
TP08	1.00	MK38	21/866	В	8.4	31	19	12			30.0		CL
TP10	1.00	MK63	21/869	В	14.6	35	18	17			55.7		CL/CI
TP11	1.00	MK58	21/871	В	18.0	34	18	16			62.3		CL
TP12	1.00	MK35	21/873	В	17.5	36	20	16			60.3		CI
TP13	1.50	MK29	21/875	В	11.5	32	18	14			37.9		CL
TP15	1.00	MK23	21/878	В	12.8	34	20	14			48.5		CL
TP19	1.00	MK05	21/883	В	12.2	34	19	15			51.9		CL

BS Sieve	Percent	Hydrometer	analysis															
size, mm	passing	Diameter, mm	% passing		100 T													
100	100	0.0630																
90	100	0.0200			90 -		+++					_	+++					
75	100	0.0060																
63	100	0.0020			80													
50	100				00													
37.5	100							Ш							V			
28	100				70 +										1			
20	98			5				Ш										
14	96.6			sin	60 +			╉┼┤						H/				
10	92.1			Pas				Ш										
6.3	86.3			ge	50 +		+++	╂╢					$\left \right $	1				
5.0	84			nta														
2.36	72.4			irce	10													
2.00	70.7			Pe	40							X						
1.18	63.5																	
0.600	52				30 +													
0.425	47.3										1							
0.300	43.2				20 +			╂┼┤					+++					
0.212	38.5							Ш										
0.150	34.6				10 +			╨				_						
0.063	26							Ш										
					0													
Cobbles, %	0				0.00)1		(0.01	-	0.1	-		- 1	-	10	-	100
Gravel, %	29				_													<u> </u>
Sand, %	45				AY	Fine		Medi	ium C	oarse	Fine	Medi	um	Coarse	Fine	Medium	Coarse	ple
Clay / Silt, %	26				С			S	SILT			SA	AND			GRAVE	Ĺ	Cob
Client :		S	Sky Castle Lt	d.							Lab.	No :	21/	856		Hole ID): T	P 01
Project :			Moygaddy								Sample	No :	MI	K15		Depth, m	n: 1	.00

Material description :	sandy slightly gravelly silty CLAY
Domarka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																				
size, mm	passing	Diameter, mm	% passing		100																		
100	100	0.0630																					
90	100	0.0200			90 -	_			┛			\rightarrow											
75	100	0.0060																					
63	100	0.0020			80														\square				
50	100				00													\mathbf{Z}					
37.5	100																	1					
28	100				70 -																		
20	98.6			5																			
14	93.2			sing	60 -				╉┼┼						\mathbf{k}						_		1 + + + + 1
10	88.4			Pas										\nearrow									
6.3	84.5			ge	50 -	_															_		
5.0	83.1			nta									1111										
2.36	75.8			irce	40	_																	
2.00	74.2			Pe	40																		
1.18	70.1																						
0.600	64.5				30 -	_																	
0.425	60.7																						
0.300	58.5				20 -				╉┼┼										++-				
0.212	56.2																						
0.150	54.2				10 -																_		
0.063	48				-																		
		_			0																		
Cobbles, %	0				0.0	01	_		C).01	_		0.1				1	-		10			100
Gravel, %	26				_				-				-							-			
Sand, %	26					¥ L	Fine	1	Medi	ium (Coarse	F	ine	Med	ium	Coar	se	Fine		Medium	n	Coarse	ple
Clay / Silt, %	48				٤				5	SILT				S	AND					GRA	VEL		Cot
-																							
Client		c	la Costla I +	d						_		1	Loh N		21	1860		_		Uolo		т	'D 04
Droject :		د 	Movgaddy	u.								Sar	Lau. N nnle N	0.	 M	7000 KAA	-+			Depth	m ·		1.00
Floject :			woygaudy									Sal	iipie N	0.	11/1	1744				Depth	,		1.00

Material description :	slightly sandy slightly gravelly silty CLAY
Domorka .	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
KellialKS.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis												
size, mm	passing	Diameter, mm	% passing		100										
100	100	0.0630												$V \mid \mid \mid$	
90	100	0.0200			90									1	
75	100	0.0060													
63	100	0.0020			80										
50	100				00										
37.5	100											1			
28	100				70										
20	92.8			5							1				
14	89.2			sing	60 —										
10	85.5			Pas											
6.3	82.4			ge	50										
5.0	81			nta											
2.36	75.9			rce	10										
2.00	74.7			Pe	40										
1.18	70.3														
0.600	66.8				30										
0.425	63.5														
0.300	60.6				20		+ + • • • • • • • • • • • • • • • • • •		+						
0.212	58.5														
0.150	56.2				10					_					
0.063	52				-										
					0										
Cobbles, %	0				0.001	_	0.0	01	0.1	-	- 1	-	10	-	100
Gravel, %	25				_										
Sand, %	23				AY	Fine	Mediu	m Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	ple
Clay / Silt, %	52				cr		SI	LT		SAND			GRAVEI	1	Cot
Client :		S	ky Castle Lt	d.					Lab. N	No: 2	1/863		Hole ID	: T	P 06
Project :			Moygaddy						Sample N	No: N	IK47		Depth, m	: 1	.00

Material description :	slightly sandy slightly gravelly silty CLAY
B omerka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis													
size, mm	passing	Diameter, mm	% passing		100											
100	100	0.0630														
90	100	0.0200			90 -											
75	100	0.0060]												
63	100	0.0020]	80											
50	100				80											
37.5	67.5															
28	56.9				70											
20	51.2															
14	48.3			sing	60											1
10	44.7			Pas												
6.3	43.1			ge	50										/	
5.0	42.4			nta												
2.36	39.3			rce	10									+		
2.00	38.5			P P	40								F			
1.18	36															
0.600	32.3				30											
0.425	30]												
0.300	28.2				20					+						
0.212	26.3															
0.150	24.6				10											
0.063	21]												
		1			0											
Cobbles, %	0				0.001			0.0	1	0.1		1		10		100
Gravel, %	62											1				
Sand, %	18				AY.	Fine	Ν	Aedium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	oble
Clay / Silt, %	21				D			SIL	.T		SAND			GRAVEL		S
Client :		S	Sky Castle Lt	d.						Lab.	No: 21	/866		Hole ID	: T	P 08
Project :			Moygaddy							Sample	No: M	IK38		Depth, m	: 1	.00
110,000			1.10 / guad y						L	Sumpre			I	Depui, in		

Material description :	slightly sandy gravelly silty CLAY
Domarka	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis														
size, mm	passing	Diameter, mm	% passing		100 T	-											
100	100	0.0630														1	
90	100	0.0200			90 +	_	++										
75	100	0.0060															
63	100	0.0020			80												
50	100				00												
37.5	100																
28	100				70 +									1			
20	96.4			5													
14	91.7			sing	60 +												
10	88.5			Pas									11				
6.3	82.6			ge	50 +		+ +										
5.0	80.4			nta													
2.36	71.7			irce	10												
2.00	70			Pe	40												
1.18	66.3																
0.600	59.5				30 +												
0.425	55.7																
0.300	53.4				20 +								+				
0.212	50.7																
0.150	48.5				10 +												
0.063	43																
					0												
Cobbles, %	0				0.00)1		(0.01	_	0.1	-	- 1	-	10	-	100
Gravel, %	30				_						_				-		
Sand, %	27				AY	Fine		Medi	ium 🛛	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	ple
Clay / Silt, %	43				сГ			:	SILT			SAND			GRAVEI		Cob
				-								<u>.</u>					
Client :		S	Sky Castle Lt	d.							Lab. 1	No: 2	1/869		Hole ID	: T	P 10
Project :			Moygaddy								Sample I	No: N	AK63		Depth, m	: 1	.00

Material description :	slightly sandy slightly gravelly silty CLAY
Domorka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis															
size, mm	passing	Diameter, mm	% passing		100 T													
100	100	0.0630																
90	100	0.0200			90 -													
75	100	0.0060																
63	100	0.0020			80													
50	100				00													
37.5	100														1			
28	96.6				70 +													
20	96.6			5														
14	92.2			sin	60 -			+++										
10	89.7			Pas									1					
6.3	85.6			ge	50 -										_			
5.0	84.1			enta														
2.36	76.3			erce	40 -													
2.00	75			Å	10													
1.18	71.7																	
0.600	65.8				30 -													
0.425	62.3																	
0.300	59.7				20 +													
0.212	57.3																	
0.150	55.8				10 -													
0.063	53																	
		1			0													
Cobbles, %	0				0.0	01			0.0	1		0.1		1		10		100
Gravel, %	25													1				
Sand, %	22				LAY	F	line	Μ	ledium	1 Coarse	4	Fine	Medium	Coarse	Fine	Medium	Coarse	pple
Clay / Silt, %	53				0	Ĵ.			SIL	Л			SAND			GRAVEL		Ŭ
Client ·			ky Castle I t	d								Lah N		1/871		Hole ID	· T	D 11
Project ·		ت ا	Movgaddy	u.					-		S	ample N		/K58		Depth m	· 1. · 1	50
110jeet.			moygaudy							ļ	0	ampier	NO. N	11120		Depui, III	• 1	.50
		r.																

Material description :	slightly sandy slightly gravelly silty CLAY
Bomorka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																
size, mm	passing	Diameter, mm	% passing		100														
100	100	0.0630																	
90	100	0.0200			90 -														
75	100	0.0060																	
63	100	0.0020			80														
50	100				00													\neg	
37.5	100																		
28	82.1				70 -											1+			
20	79.5			5															
14	78.8			sing	60 -				╉┼┼		1 + +				[-				
10	77.1			Pas															
6.3	75.6			ge	50 -		+						11						
5.0	74.8			nta															
2.36	71.9			erce	40														
2.00	71.1			Pe	40														
1.18	68.5																		
0.600	63.2				30 -														
0.425	60.3																		
0.300	58.4				20 -														
0.212	56.8																		
0.150	55.3				10 -														
0.063	51																		
					0														
Cobbles, %	0				0.0	01			(0.01			0.1		1		10		100
Gravel, %	29													1	1	-			
Sand, %	20					ξL	Fine	I	Medi	ium (Coarse	Fir	ne	Medium	Coarse	Fine	Medium	n Coarse	e ople
Clay / Silt, %	51				5	5			5	SILT				SAND			GRA	VEL	Co
Client :		S	Sky Castle Lt	d.								L	ab. No	b : 2	1/873	1	Hole	ID :	TP 12
Project :			Moygaddy									Sam	ple No): N	1K35]	Depth	, m :	1.00
										-									

Material description :	slightly sandy slightly gravelly silty CLAY
Domorka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis																
size, mm	passing	Diameter, mm	% passing		100 T							-							
100	100	0.0630																	
90	100	0.0200			90 -							_							
75	100	0.0060																\boldsymbol{k}	
63	100	0.0020			80														
50	100				00														
37.5	100																		
28	93.1				70 +												λ		
20	86.9			5															
14	76.4			sing	60 -		+ +				┼╏┼┼┼┼					\leftarrow			┨┼┼┼┤
10	72.3			Pas															
6.3	64.7			ge	50 -							_			4				
5.0	62.7			nta															
2.36	54			irce	10														
2.00	52.7			Pe	40														
1.18	48.3												1						
0.600	40.8				30 +														
0.425	37.9																		
0.300	35				20 -						I	-					+++		
0.212	32.1																		
0.150	28.6				10 -							_							
0.063	21																		
					0														
Cobbles, %	0				0.0	D1			0.01		0.1			1			10		100
Gravel, %	47								1						-			1	
Sand, %	32				AY	Fine		Med	dium C	oarse	Fine	Med	lium	Coarse	Fine	Μ	ledium	Coarse	bble
Clay / Silt, %	21				5				SILT			S	AND				GRAVE		Ĉ
															·				
Client :		S	ky Castle Lt	d.					┥┝──		Lab.	No :	21	/875		-	Hole ID	: T	P 13
Project :			Moygaddy								Sample	No :	M	K29		D	epth, m	.: [1	.50

Material description :	slightly sandy gravelly silty CLAY
Domarka :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kennarks .	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis															
size, mm	passing	Diameter, mm	% passing		100													
100	100	0.0630																
90	100	0.0200			90 -											\square		
75	100	0.0060																
63	100	0.0020			80													
50	100				80													
37.5	100																	
28	100			1	70 —													
20	96.2																	
14	88.6			sing	60 —			+	$\mathbf{I} \rightarrow \mathbf{I}$	+								
10	81.9			Pas														
6.3	73.5			ge	50 -					+			1					
5.0	71.2			nta														
2.36	63			rce	10						\square							
2.00	61.2			Pe -	40													
1.18	57.4																	
0.600	51.9				30 —													
0.425	48.5																	
0.300	46.2				20 -													
0.212	43.9																	
0.150	42.2				10 -									_				
0.063	37				_													
					0													
Cobbles, %	0				0.00	1	(0.01	-	0.1	1		1		1	0		100
Gravel, %	39				_		 							_	_	-		
Sand, %	24				AY	Fine	Medi	ium C	Coarse	Fine	М	edium	Coarse	Fine	Medi	ium	Coarse	ple
Clay / Silt, %	37				5		5	SILT				SAND			GF	RAVEL		Cob
														•				
Client		C	Viru Cootla I 4	4			1			Lab	Nat	- 21	1070	1 —	II.	la ID -	т	D 15
Droject :		2	Movgaddy	u.						LaD.	No:	21 M	10/0	┨ ┣━━	Don	th m	1	
Project :			woygaddy							Sample	100:	IVI	N23		Dep	ui, iii :		1.00

Material description :	slightly sandy gravelly silty CLAY
Bomerice :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
Kelliarks.	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

BS Sieve	Percent	Hydrometer	analysis															
size, mm	passing	Diameter, mm	% passing		100 —													
100	100	0.0630												- 1			$V \mid \mid \mid$	
90	100	0.0200		1	90 -									_			4	
75	100	0.0060																
63	100	0.0020			80													
50	100				00									- 1				
37.5	100																	
28	100				70 +										$\land \uparrow$			
20	94.1													\land				
14	87.6			sing	60 +					+				-+		+		
10	83.9			Pas														
6.3	78.6			ge	50 -							- //		_				
5.0	77			nta										- 1				
2.36	68.3			srce	10						\checkmark							
2.00	66.5			P P	40													
1.18	62.3													- 1				
0.600	55.8				30 +													
0.425	51.9																	
0.300	48.4				20 +									-				
0.212	45.4													- 1				
0.150	42.6				10 -									_				
0.063	38																	
					0													
Cobbles, %	0				0.00)1		0.01		0	.1	-	- 1	-		10	-	100
Gravel, %	34				_													
Sand, %	29				AY	Fine	Med	lium (Coarse	Fine	Μ	ledium	Coarse		Fine	Medium	Coarse	ble
Clay / Silt, %	38				cr			SILT				SAND				GRAVE	L	Cot
								,										
Client :		S	ky Castle Lt	d.						Lab	0. No :	21	/883	_		Hole II	D: T	'P 19
Project :			Moygaddy							Sample	e No :	M	K05			Depth, n	n:	1.00

Material description :	slightly sandy slightly gravelly silty CLAY
Remarks :	Soils with clay or silt content between 15% - 35% can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour.
	Where material is for re-use and therefore disturbed, only soils with clay or silt >35% are classified as clay or silt

California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Client	Sky Castle Ltd.
Site	Moygaddy
S.I. File No	5863 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email info@siteinvestigations.ie
Report Date	12th July 2021

CBR No	Depth	Sample	Sample	Lab Ref	Moisture Content	CBR Value (%)	Location / Remarks
	(mBGL)	No	Туре		(%)		
TP01	0.50	MK14	CBR	21/855	10.3	7.5	
TP02	0.50	MK07	CBR	21/857	14.8	5.2	
TP03	0.50	MK02	CBR	21/858	16.5	5.2	
TP04	0.50	MK43	CBR	21/859	8.8	9.7	
TP05	0.50	MK39	CBR	21/861	12.3	8.2	
TP06	0.50	MK46	CBR	21/862	10.4	9.5	
TP07	0.50	MK51	CBR	21/864	12.9	8.8	
TP08	0.50	MK37	CBR	21/865	17.0	4.3	
TP09	0.50	MK60	CBR	21/867	15.3	7.4	
TP10	0.50	MK62	CBR	21/868	10.1	10.9	
TP11	0.50	MK57	CBR	21/870	17.5	5.0	
TP12	0.50	MK34	CBR	21/872	14.8	8.9	
TP13	0.50	MK27	CBR	21/874	12.1	11.2	
TP14	0.50	MK24	CBR	21/876	9.1	11.6	
TP15	0.50	MK22	CBR	21/877	17.9	4.1	
TP16	0.50	MK54	CBR	21/879	17.6	5.2	
TP17	0.50	MK17	CBR	21/880	12.7	6.8	
TP18	0.50	MK11	CBR	21/881	10.8	9.3	
TP19	0.50	MK04	CBR	21/882	15.7	5.3	
TP20	0.50	MK19	CBR	21/884	12.6	11.4	
TP21	0.50	MK31	CBR	21/885	10.8	10.3	

Chemical Testing In accordance with BS 1377: Part 3

Client	Sky Castle Ltd.
Site	Moygaddy
S.I. File No	5863 / 21
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	12th July 2021

Hole Id	Depth	Sample	Lab Ref	pН	Water Soluble	Water Soluble	Loss on	Chloride	% passing	Remarks
	(mBGL)	No		Value	Sulphate Content	Sulphate Content	Ignition	ion	2mm	
					(2:1 Water-soil	(2:1 Water-soil	(Organic	Content		
					extract) (SO ₃)	extract) (SO ₃)	Content)	(water:soil		
					g/L	%	%	ratio 2:1)		
								%		
TP01	1.00	MK15	21/856	8.59	0.120	0.085		0.26	70.7	
TP04	1.00	MK44	21/860	8.75	0.126	0.093		0.21	74.2	
TP06	1.00	MK47	21/863	8.80	0.126	0.094		0.23	74.7	
TP08	1.00	MK38	21/866	8.73	0.117	0.045		0.22	38.5	
TP10	1.00	MK63	21/869	8.66	0.122	0.085		0.24	70.0	
TP12	1.00	MK35	21/873	8.71	0.127	0.090		0.24	71.1	
TP15	1.00	MK23	21/878	8.73	0.123	0.075		0.24	61.2	
TP19	1.00	MK05	21/883	8.67	0.120	0.080		0.26	66.5	

Appendix 7 Geotechnical Rock Laboratory Test Results

Point Load Test Broch, E. & Franklin, J.A., IRSM Point Load Test Method

Uniaxial Compressive Strength in accordance with BS1881

Client	Sky Castle Ltd.
Site	Moygaddy
S.I. File No	5863 / 19
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email:info@siteinvestigations.ie
Report Date	22nd July 2021

Hole ID	Depth (m)	Lab Ref No.	Sample Type	Diameter / Height (mm)	Test Type	Is (MN/m ²)	Compressive Strength (MPa)	Strength Designation	Approx. Equivalent UCS Value (MPa)	Remarks
RC04	6.78	21/931	С	65	PL	4.73		Very Strong	119.5	Tested Diametrically
RC04	8.47	21/932	С	65	PL	3.79		Strong	96.0	Tested Diametrically
RC05	6.20	21/933	С	65	PL	4.50		Very Strong	114.0	Tested Diametrically
RC05	8.17	21/934	С	65	PL	2.13		Strong	54.0	Tested Diametrically
RC06	5.45	21/935	С	65	PL	3.43		Strong	87.0	Tested Diametrically
RC06	6.96	21/936	С	65	PL	4.50		Very Strong	114.0	Tested Diametrically
RC07	6.20	21/937	С	65	PL	4.50		Very Strong	114.0	Tested Diametrically
RC07	7.10	21/938	С	65	PL	4.26		Very Strong	108.0	Tested Diametrically
RC08	7.07	21/939	С	65	PL	1.70		Moderately Strong	43.0	Tested Diametrically
RC08	8.24	21/940	С	65	PL	2.96		Strong	75.0	Tested Diametrically
RC09	6.40	21/941	С	65	PL	5.21		Very Strong	132.0	Tested Diametrically
RC09	7.00	21/942	С	65	PL	1.23		Moderately Strong	31.0	Tested Diametrically
RC10	3.27	21/943	С	65	PL	4.38		Very Strong	111.0	Tested Diametrically
RC10	4.10	21/944	С	65	PL	2.60		Strong	66.0	Tested Diametrically
RC11	6.80	21/945	С	65	PL	4.38		Very Strong	111.0	Tested Diametrically
RC11	8.90	21/946	С	65	PL	3.79		Strong	96.0	Tested Diametrically
RC17	8.35	21/947	С	65	PL	3.55		Strong	90.0	Tested Diametrically
RC17	8.29	21/948	С	65	PL	4.50		Very Strong	114.0	Tested Diametrically
RC19	5.50	21/949	С	65	PL	4.14		Very Strong	104.5	Tested Diametrically
RC19	6.80	21/950	С	65	PL	4.62		Very Strong	108.0	Tested Diametrically

Appendix 8 Survey Data

Location	Irish Transve	erse Mercator	Elovation	Irish National Grid			
LOCATION	Easting	Northing	Elevation	Easting	Northing		
		Bore	holes				
BH01	693986.514	739217.399	56.45	294056.159	239192.090		
BH02	693926.010	739294.840	56.95	293995.641	239269.547		
BH03	694117.023	739155.527	55.01	294186.696	239130.205		
BH04	693732.812	739457.539	56.85	293802.400	239432.280		
BH05	693928.844	739604.500	58.72	293998.473	239579.274		
BH06	693927.326	739421.930	57.55	293996.956	239396.665		
BH07	694241.270	739411.796	58.99	294310.968	239386.531		
BH08	694331.307	739691.333	61.30	294401.022	239666.129		
BH09	694598.661	739652.377	61.68	294668.434	239627.166		
BH10	694446.855	739466.694	59.25	294516.597	239441.442		
BH11	694790.229	739307.430	59.88	294860.046	239282.145		
BH12	694615.966	739002.198	56.86	294685.748	238976.846		
BH13	694659.374	738763.773	52.09	294729.167	238738.369		
BH14	694546.422	738784.570	53.46	294616.190	238759.170		
BH15	694458.907	738814.666	54.44	294528.656	238789.272		
BH16	693655.329	739258.288	49.53	293724.902	239232.986		
BH17	694518.865	738836.591	54.89	294588.627	238811.202		
BH18	694562.423	738770.148	52.93	294632.195	238744.745		
	Rotary Coreholes						
RC04	693637.963	739436.766	56.84	293707.531	239411.502		
RC05	693935.222	739548.071	58.60	294004.853	239522.833		
RC06	694016.492	739390.864	57.65	294086.142	239365.593		
RC07	694142.350	739365.230	57.84	294212.027	239339.954		
RC08	694212.597	739630.304	60.48	294282.287	239605.086		
RC09	694497.168	739610.386	61.10	294566.919	239585.165		
RC10	694428.449	739378.834	57.86	294498.187	239353.562		
RC11	694711.726	739248.236	59.49	294781.526	239222.938		
RC12	694562.423	738770.148	52.93	294632.195	238744.745		
RC13	694473.806	738837.204	55.00	294543.558	238811.815		
RC14	694269.076	739051.513	55.61	294338.783	239026.170		
RC16	694648.959	738608.023	45.96	294718.751	238582.586		
RC17	693707.911	739303.990	54.78	293777.495	239278.698		
RC18	693667.400	739242.451	49.86	293736.976	239217.145		
RC19	694613.822	739485.171	58.39	294683.599	239459.924		
RC20	694717.266	739392.581	59.02	294787.066	239367.314		
		Tria	l Pits				
TP01	693958.608	739151.571	55.32	294028.247	239126.247		
TP02	693988.420	739286.118	57.37	294058.064	239260.824		
TP03	693767.173	739286.781	55.26	293836.770	239261.486		
TP04	693682.930	739502.916	56.95	293752.507	239477.667		

Location	Irish Transverse Mercator		Elevation	Irish National Grid			
Location	Easting	Northing	Elevation	Easting	Northing		
TP05	693971.792	739656.168	58.70	294041.430	239630.954		
TP06	693989.839	739437.563	57.88	294059.483	239412.302		
TP07	694176.647	739446.736	58.93	294246.331	239421.478		
TP08	694199.733	739712.642	61.26	294269.420	239687.442		
TP09	694508.798	739701.821	62.01	294578.551	239676.620		
TP10	694486.386	739434.493	58.96	294556.136	239409.234		
TP11	694739.889	739363.529	59.42	294809.695	239338.256		
TP12	694471.269	739060.502	56.97	294541.019	239035.162		
TP13	694562.423	738770.148	52.93	294632.195	238744.745		
TP14	694240.465	739010.894	55.01	294310.166	238985.542		
TP15	694131.238	739202.931	55.37	294200.914	239177.620		
TP16	694580.524	739205.916	58.33	294650.296	239180.608		
TP17	693968.747	739114.742	54.52	294038.389	239089.410		
TP18	693940.121	739224.755	55.98	294009.756	239199.447		
TP19	693876.942	739296.996	55.71	293946.562	239271.703		
TP20	694084.588	739079.517	55.01	294154.255	239054.179		
TP21	694518.865	738836.591	54.89	294588.627	238811.202		
Dynamic Probes							
DP01	694395.693	739790.416	62.17	294465.421	239765.234		
DP02	694488.532	739787.664	61.87	294558.280	239762.481		
DP03	693987.686	739685.908	58.58	294057.327	239660.700		
DP04	694088.248	739692.829	59.34	294157.911	239667.624		
DP05	694187.716	739683.631	60.98	294257.400	239658.424		
DP06	694288.959	739687.709	61.12	294358.665	239662.504		
DP07	694385.497	739682.425	61.53	294455.224	239657.219		
DP08	694489.069	739686.527	61.51	294558.818	239661.323		
DP09	694590.817	739686.475	61.71	294660.588	239661.271		
DP10	694693.928	739687.423	60.58	294763.721	239662.220		
DP11	693887.836	739587.012	58.01	293957.456	239561.782		
DP12	693990.198	739586.789	58.63	294059.841	239561.560		
DP13	694087.587	739588.545	58.95	294157.250	239563.317		
DP14	694188.942	739587.683	59.62	294258.627	239562.455		
DP15	694289.424	739586.183	59.97	294359.131	239560.956		
DP16	694488.048	739589.540	60.82	294557.798	239564.315		
DP17	694589.076	739587.354	60.73	294658.847	239562.129		
DP18	694688.772	739584.729	60.89	294758.565	239559.504		
DP19	693691.519	739485.259	57.06	293761.098	239460.006		
DP20	693789.642	739485.089	56.56	293859.242	239459.837		
DP21	693889.602	739486.389	57.21	293959.224	239461.138		
DP22	693990.017	739487.250	58.16	294059.660	239461.999		
DP23	694089.764	739487.208	58.44	294159.429	239461.958		

Loodien	Irish Transverse Mercator		Flowetien	Irish National Grid		
Location	Easting	Northing	Elevation	Easting	Northing	
DP24	694198.133	739492.619	59.24	294267.821	239467.371	
DP25	694385.716	739486.593	59.28	294455.444	239461.345	
DP26	694489.024	739485.194	59.56	294558.775	239459.946	
DP27	694586.781	739491.852	58.59	294656.553	239466.606	
DP28	694688.953	739488.632	58.31	294758.747	239463.386	
DP29	694780.802	739491.934	56.47	294850.615	239466.689	
DP30	693593.273	739395.730	56.03	293662.832	239370.457	
DP31	693688.922	739386.795	57.17	293758.501	239361.521	
DP32	693787.843	739388.255	56.49	293857.444	239362.982	
DP33	693889.656	739385.777	56.89	293959.278	239360.504	
DP34	693987.346	739387.484	57.60	294056.989	239362.212	
DP35	694086.861	739385.871	57.91	294156.526	239360.599	
DP36	694190.231	739385.957	58.35	294259.918	239360.686	
DP37	694288.456	739387.753	58.62	294358.164	239362.483	
DP38	694370.568	739380.643	58.45	294440.294	239355.372	
DP39	694486.826	739390.243	58.25	294556.577	239364.974	
DP40	694569.043	739386.611	54.78	294638.812	239361.342	
DP41	694691.616	739389.831	59.36	294761.411	239364.563	
DP42	694791.212	739385.883	58.94	294861.028	239360.615	
DP43	693688.642	739290.847	52.18	293758.222	239265.552	
DP44	693788.258	739285.161	56.04	293857.859	239259.865	
DP45	694091.482	739278.290	56.67	294161.149	239252.995	
DP46	694430.386	739324.235	53.90	294500.125	239298.952	
DP47	694493.472	739282.726	58.49	294563.225	239257.434	
DP48	694590.116	739288.613	59.21	294659.890	239263.323	
DP49	694682.452	739291.233	59.96	294752.246	239265.944	
DP50	694788.363	739288.137	59.82	294858.180	239262.848	
DP51	693890.121	739187.554	55.56	293959.745	239162.238	
DP52	693984.693	739184.950	56.07	294054.337	239159.634	
DP53	694089.481	739189.955	55.39	294159.148	239164.641	
DP54	694189.069	739183.974	55.51	294258.757	239158.659	
DP55	694250.676	739180.873	51.64	294320.378	239155.557	
DP56	694409.931	739184.774	55.98	294479.667	239159.460	
DP57	694513.646	739200.814	58.11	294583.404	239175.504	
DP58	694584.206	739182.489	58.08	294653.979	239157.176	
DP59	694690.632	739192.594	58.36	294760.428	239167.284	
DP60	694784.383	739187.502	58.33	294854.199	239162.191	
DP61	693991.061	739083.755	53.29	294060.708	239058.417	
DP62	694185.443	739087.742	49.21	294255.131	239062.406	
DP63	694290.240	739085.762	55.96	294359.951	239060.426	
DP64	694385.154	739082.180	56.76	294454.885	239056.844	

Location	Irish Transve	erse Mercator	Elevation	Irish National Grid		
Location	Easting	Northing	Elevation	Easting	Northing	
DP65	694488.362	739086.289	57.03	294558.116	239060.954	
DP66	694588.543	739090.206	57.41	294658.318	239064.873	
DP67	694682.814	739084.421	57.54	294752.609	239059.087	
DP68	694787.254	739083.914	56.22	294857.072	239058.581	
DP69	694090.959	738991.035	49.72	294160.628	238965.677	
DP70	694187.890	738981.735	52.48	294257.580	238956.376	
DP71	694289.189	738983.578	55.45	294358.901	238958.220	
DP72	694384.733	738989.607	56.10	294454.465	238964.251	
DP73	694486.822	738986.510	56.87	294556.576	238961.154	
DP74	694586.960	738983.395	56.54	294656.736	238958.039	
DP75	694691.101	738989.216	56.20	294760.899	238963.862	
DP76	694188.862	738882.936	48.76	294258.553	238857.556	
DP77	694291.409	738890.282	54.52	294361.122	238864.904	
DP78	694392.533	738890.201	54.87	294462.268	238864.823	
DP79	694490.609	738885.308	55.95	294560.365	238859.930	
DP80	694587.972	738887.143	55.82	294657.749	238861.766	
DP81	694688.909	738889.761	54.95	294758.707	238864.385	
DP82	694286.007	738783.740	47.18	294355.719	238758.339	
DP83	694396.549	738786.809	53.35	294466.285	238761.409	
DP84	694589.396	738787.697	53.34	294659.174	238762.298	

S.I. Ltd Contract No: 5863A

Client:Sky Castle LtdEngineer:OCSCContractor:Site Investigations Ltd

<u>Moygaddy,</u> <u>Maynooth, Co. Meath</u> <u>Additional Site Investigation Report</u>

Prepared by:

Stephen Letch

Issue Date:	06/08/2021
Status	Final
Revision	1

Contents:

ntents:		Page No.
1.	Introduction	1
2.	Site Location	1
3.	Fieldwork	1
4.	Ground Conditions	2

Appendices:

- 1. Trial Pit Logs and Photographs
- 2. Survey Data
1. Introduction

On the instructions of OCSC, Site Investigations Ltd (SIL) was appointed to complete a ground investigation at Moygaddy, Maynooth, Co. Meath. The investigation was completed for the residential development on the site and was completed on behalf of the Client, Sky Castle Ltd. The fieldworks were started in June and completed in July 2021. Following completion of the initial fieldworks, the Client requested further investigatory works in one field on the site and this report covers those additional works.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Site Location

The site is located to the north of Maynooth with the Kildare-Meath border running to the south of the site with Maynooth in Kildare and the site in Meath. Carton Demense is to the east of site with Dublin city further to the east. The first map below shows the location of the site to the north of Maynooth town and the second map shows the area of investigation (in red) within the site.

3. Fieldwork

The fieldworks comprised a programme of cable percussive boreholes, rotary coreholes, trial pits and dynamic probes. All fieldwork was carried out in accordance with BS 5930:2015, Engineers Ireland GI Specification and Related Document 2nd Edition 2016 and Eurocode 7: Geotechnical Design.

The fieldworks comprised of the following:

• 9 No. trial pits

3.1. Trial Pits

9 No. trial pits were excavated using a wheeled excavator. The pits were logged and photographed by SIL geotechnical engineer and were completed to try and identify the MADE GROUND within the area. Groundwater ingresses and pit wall stability were also recorded as the excavations progressed.

The trial pit logs and photographs are presented in Appendix 1.

3.2. Surveying

Following completion of all the fieldworks, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log along with a site plan in Appendix 2.

4. Ground Conditions

MADE GROUND was encountered in TP23, TP25 and TP26 and therefore indicates that the area of fill material is quite small. No environmental testing was scheduled for analysis of the fill material.

Appendix 1 Trial Pit Logs and Photographs

Contract No: 5863A Trial Pit Log Contract: Moygaddy Easting:					og							Trial Pit N	No: 2
Contra	act:	Moygaddy		Eastin	g:	694224	4.181		Date:		05/	/08/2021	
Locati	ion:	Maynooth, Co. Meat	th	Northi	ng:	739192	2.184		Excavato	or:	JC	B 3CX	
Client	:	Sky Castle Ltd		Elevat	ion:	55.19			Logged I	Зу:	M.	Kaliski	
Engin	eer:	OCSC		Dimen (LxWx	sions D) (m):	3.30 x	0.60 ×	1.10	Status:		FIN	JAL	
Level	(mbgl)		Stratum Descriptio	on		Leaend	Level	(mOD) Sam	ples /	Fiel	ld Tests	Water
Scale:	Depth .		, i				Scale:	Depth	n: Depth	Тур	pe	Result	Strike
	0.20	Grey brown silty sand GRAVEL of limestone coarse. Cobbles are a	y fine to coarse, ang with high cobble cor angular to subrounde	ular to subrounded itent. Sand is fine to d of limestone.				54.99)				
	0.90	Firm grey slightly sand content. Sand is fine t subrounded of limesto imestone. Pit terminated as no fi	dy slightly gravelly sil o coarse. Gravel is fi one. Cobbles are ang Il material encounter Pit terminated at 1.10	ty CLAY with high co ne to coarse, angula ular to subrounded o ed. m	bble 2 r to 2 of 2		- - 54.0 — - - -	54.29)				
2.0							53.5 - - - - - 53.0 - - -	-					
2.5							- 52.5 - - -	-					
							52.0 — - - 51.5 —	-					
							-	-					
		Termination:	Pit Wall Stability:	Groundwater Rate:	Rema	rks:			Key	 :			
		Natural soils.	Pit walls stable.	Dry	Dry - B = Bulk disturbe Dry - B = Small disturbe D = Small disturbed ES = ES = Environmental					turbed isturbed ırbed CBR nental			

Contract No: 5863A Trial Pit Log Contract: Moygaddy Easting:					Dg Tria					Trial Pit I	No: 3			
Contra	act:	Moygaddy			Easting:		694171	.219		Date:		05	/08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	:	739144	.288		Excava	ator:	JC	B 3CX	
Client		Sky Castle Ltd			Elevation	n:	53.65			Logged	l By:	M.	Kaliski	
Engin	eer:	ocsc			Dimensio (LxWxD)	ons) (m):	3.50 x	0.60 x	1.80	Status:		FI	NAL	
Level	(mbgl)		Stratum Description	on		I	Legend	Level	(mOD) Sai	nples /	/ Fie	ld Tests	Water
Scale:	Depth							Scale:	Depth	n: Dep	th Ty	pe	Result	Suike
_								53.5 —						
	0.20	MADE GROUND: gre	y brown silty gravelly	sand with hig	gh cobble			-	53.45	5				
		content and trace of ta	armacadam and plas	tic bags tragm	nents.			-						
0.5 —								-						
_								- 53.0						
_	0.70	MADE GROUND: gre	y brown slightly sand	ly slightly grav	velly silty				52.95	5				
	0.00	clay with high cobble	content and some pla	astic bag fragr	ments.			-	E0 75					
1.0	0.90	MADE GROUND: dar	k grey slightly sandy	slightly grave	elly silty cla	lay		-	52.75					
_		ragments.						-						
-								52.5 —						
-								_						
-								_						
1.5 -	1.60							-	52.05	5				
_		-irm grey slightly sand content. Sand is fine t	dy slightly gravelly sil to coarse. Gravel is fi	ne to coarse,	angular to	ble 🙀		52.0 —						
_	1.80	subrounded of limesto	one. Cobbles are ang	jular to subrou	unded of		<u>X</u> o	_	51.85	5				
-		Pit terminated as natu	Iral ground encounter	red.				_						
2.0 —			Fit terminated at 1.00					-						
								51.5 —						
_								-						
_								_						
2.5 —								_						
								51.0 —						
_								-						
_								_						
3.0 —								-						
								50.5 —						
								-						
_								-						
3.5 —								-						
_								50.0 —						
								-						
						_								
		Termination:	Pit Wall Stability:	Groundwater	Rate: R	Remar	ks:		1	Ke	y:		I	
	5)	Natural soils. Pit walls stable. Dry				- B = Bulk D = Smal CBR = Und				k disturbed hall disturbed hdisturbed CBR				

Contract No: 5863A Trial Pit Log Contract: Moygaddy Easting:											Trial Pit TP2	No: 4
Contra	act:	Moygaddy			Easting:	ting: 694195.767 Date: thing: 739169.748 Excav					5/08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	73916	9.748		Excavator	:: J	CB 3CX	
Client		Sky Castle Ltd			Elevation:	55.38			Logged B	y: N	/I. Kaliski	
Engin	eer:	OCSC			Dimension (LxWxD) (r	s n): 3.20	x 0.60 >	c 1.10	Status:	F	INAL	
Level	(mbgl)	1	Stratum Descriptio	on		Legend	Level	(mOD) Samp	les / F	ield Tests	Water
Scale:	Depth .						Scale:	Depth	: Depth	Туре	e Result	Strike
	0.10	TOPSOIL. Grey brown silty grave content. Gravel is fine imestone. Cobbles ar Firm grey slightly sand content. Sand is fine t subrounded of limesto imestone. Pit terminated as no fi	elly fine to coarse SA to coarse, angular to e angular to subroun dy slightly gravelly sil o coarse. Gravel is fi one. Cobbles are ang <u>Il material encounter</u> Pit terminated at 1.10	ND with high o subrounded ded of limesto ty CLAY with ne to coarse, ular to subrou ed. m	cobble of one. high cobble angular to unded of			55.28	3			
3.0							-	-				
_							- 	-				
3.5							51.5 -	-				
		1				1						
		Termination: Natural soils.	tion: Pit Wall Stability: Groundwater Rate: Remarks: soils. Pit walls stable. Dry -				Key: B = D = CBR = ES =	Bulk c Small = Undis Enviror	listurbed disturbed sturbed CBR nmental			

Contra 58	Contract No: Trial Pit Log								Trial Pit TP2	No: 5	
Contra	act:	Moygaddy	Easting	:	694150	.929		Date:	0	5/08/2021	
Locat	ion:	Maynooth, Co. Meath	Northing	g:	739121	.930		Excavator	: J	CB 3CX	
Client		Sky Castle Ltd	Elevatio	n:	53.60			Logged By	/: N	/I. Kaliski	
Engin	eer:	ocsc	Dimens (LxWxD	ions) (m):	3.40 x	0.60 x	3.10	Status:	F	INAL	
Level	(mbgl)	Stratum Description		L	egend	Level	(mOD) Sampl	es / F	ield Tests	Water
Scale:	Depth					Scale:	Depth	n: Depth	Туре	e Result	Sinke
-	0.10	MADE GROUND: grey brown slightly sandy sligh clay with high cobble content and some scrap me	htly gravelly silty etal fragments.	'		53.5 — - -	53.50)			
0.5	0.60	MADE GROUND: dark grey slightly sandy slightly with medium cobble content and some red brick, and tree branch fragments.	ly gravelly silty c , plastic bag, raç	lay I		- 53.0 - -	53.00)			
1.0						- 52.5 — - -					
1.5						- 52.0 — - -	-				
2.5 —						51.5 — - - -					
	2.90	Firm grey brown slightly sandy slightly gravelly si	ilty CLAY with h	igh		51.0 — - -	50.70)			
	3.10	cobble content. Sand is fine to coarse. Graver is angular to subrounded of limestone. Cobbles are subrounded of limestone. Pit terminated as natural ground encountered. Pit terminated at 3.10m	angular to			50.5 — - -	50.50)			
3.5						- 50.0 — - -					
		Termination: Pit Wall Stability: Grour Natural soils. Pit walls stable.	ndwater Rate: I Dry -	Remark	ks:			Key: B = D = CBR = ES = E	Bulk d Small Undis Enviror	listurbed disturbed sturbed CBR nmental	

Contract No: Trial Pit Log										Trial Pit N	No: 6			
Contra	act:	Moygaddy			Easting:		694121	.750		Date:		05/	08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:		739105	5.896		Excavato	or:	JCI	B 3CX	
Client	t:	Sky Castle Ltd			Elevation	:	53.76			Logged I	By:	M.	Kaliski	
Engin	ieer:	OCSC			Dimensio (LxWxD)	ons (m):	3.40 x	0.60 x	1.20	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		L	_egend	Level	(mOD) Sam	oles /	Fiel	ld Tests	Water
Scale:	Depth							Scale:	Depth	: Depth	Тур	be	Result	Suike
	0.10	MADE GROUND: ligh cobble, medium bould fragments.	it grey brown silty gra ler content and some	evelly sand wi	th high d plastic pi	ipe		- 53.5 — -	53.66	6				
	0.60	Firm brown slightly sa cobble content. Sand angular to subrounder subrounded of limesto	ndy slightly gravelly s is fine to coarse. Gra d of limestone. Cobbl one.	silty CLAY wit vel is fine to o es are angula	h high coarse, ar to	<u>제: 1 '제: 1 '제: 1 '제: 1 '제' (</u> ' _		53.0	53.16	5				
	1.20	Pit terminated as natu	Iral ground encounter Pit terminated at 1.20	red. m					52.56	3				
2.0								- - 51.5 — - -						
3.0								51.0 - - -						
3.5								50.5 — — — 50.0 —						
									1			+		
	\sim	Termination:	Pit Wall Stability:	Groundwater	Rate: Re	emar	ks:		1	Key				
		Natural soils.	Pit walls stable.	Dry	-	B = Bul D = Sm CBR = Ur ES = Envi				Bulk Sma = Uno Envir	dist all di distu onm	turbed sturbed irbed CBR iental		

Contra 58	Trial Pit Log								Trial Pit TP2	No: 7		
Contra	act:	Moygaddy			Easting:	ng: 694111.948 Date: ing: 739071.753 Excav)5/08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	73907	1.753		Excavato	r: .	JCB 3CX	
Client		Sky Castle Ltd			Elevation:	54.29			Logged E	By: I	V. Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (n	3.30 x	(0.60)	c 1.00	Status:	F	FINAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	oles / F	ield Tests	Water
Scale:	Depth						Scale:	Depth	Depth	Тур	e Result	Ourice
	0.10	Firm grey brown sligh cobble and low bould ine to coarse, angula boulders are angular diameter).	tly sandy slightly grav er content. Sand is fir r to subrounded of lin to subrounded of lime	velly silty CLA ne to coarse. (nestone. Cob estone (up to	Y with high Gravel is bles and 300mm			- 54.19)			
1.0 —	1.00	Dit termineted og na fi	Il motorial anaquintar	ad				53.29	9			
		<u>Pit terminated as no fi</u>	Il material encountera Pit terminated at 1.00	edm	· · · · · · · · · · · · · · · · · · ·							
_							-	-				
3.0							-	-				
-							51.0 —	1				
-							-					
3.5							50.5 -	-				
		Termination:	Pit Wall Stability:	Groundwater	Rate: Rer	narks:		1	Key:		1	1
		Natural soils.	Pit walls stable.	Dry	-	e: Remarks: Key: - B = Bulk disturb D = Small distur CBR = Undisturbe ES = Environment					disturbed I disturbed sturbed CBR nmental	

Contract No: Trial Pit Log 5863A Easting: 694094.546 Date:								Trial Pit N	No: 3				
Contra	act:	Moygaddy			Easting:	69409	4.546		Date:		05/	08/2021	
Locati	ion:	Maynooth, Co. Meat	th		Northing:	73902	2.870		Excavato	r:	JCI	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	53.10			Logged B	y:	M.	Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (m): 3.20 >	(0.60)	0.80	Status:		FIN	IAL	
Level	(mbgl)		Stratum Description	on		Legend	Level	(mOD) Samp	les /	Fiel	ld Tests	Water
Scale:	Depth -						Scale:	Depth	: Depth	Тур	be	Result	Sunke
0.5 -	0.10	Firm grey brown sligh cobble and low boulde ine to coarse, angula boulders are angular f diameter).	tly sandy slightly graver er content. Sand is fir r to subrounded of line to subrounded of lime	velly silty CLA ne to coarse. nestone. Cob estone (up to	Y with high Gravel is bles and 300mm		53.0	53.00					
_	0.80	Pit terminated as no fi	ill material encounter Pit terminated at 0.80	ed	/		-	52.30					
			Pit terminated at 0.80	m			52.0						
3.0								-					
							49.5 -	-					
		Termination:	Pit Wall Stability:	Groundwater	Rate: Rem	 arks:			Kev.				
		Natural soils.	Pit walls stable.	Dry	-				B = D = CBR ES =	Bulk Sma = Unc Envir	dist all di distu onm	turbed sturbed irbed CBR nental	

Contract No: 5863A Trial Pit Log													Trial Pit I	No:
Contra	act:	Moygaddy			Easting:	694	133.8	93		Date:		05	/08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	739	141.1	52		Excavato	or:	JC	B 3CX	
Client	:	Sky Castle Ltd			Elevation:	54.6	69			Logged B	By:	M.	Kaliski	
Engin	eer:	ocsc			Dimensions (LxWxD) (n): 3.0	0 x 0.	.60 x	1.90	Status:		۶I	NAL	
Level	(mbgl)		Stratum Description	on		Lege	end Le	evel	(mOD)) Sam	oles /	Fie	ld Tests	Water Strike
Scale:	Deptn	TOPSOIL.						cale:	Depth	Deptn	iy	pe	Result	
	1.90	Firm grey brown sligh cobble and low boulde Sand is fine to coarse subrounded of limesto subrounded of limesto	tly sandy slightly gra er content and occas one. Cobbles and bor one (up to 300mm dia ill material encounter Pit terminated at 1.90	velly silty CLA ional black cla arse, angular i ulders are ang ameter).	Y with high ay bands. to gular to		5 5 5 5 5 5 5 5 5 5 5		54.59					
								-						
		Termination:	Pit Wall Stability:	Groundwater	Rate: Ren	narks:	I		<u> </u>	Key				
		Natural soils.	Pit walls stable.	Dry	-					B = D = CBR ES =	Bulk Sma = Uno Envir	c dis all d distu ronn	turbed isturbed urbed CBR nental	

Contract No: Trial Pit Log 5863A Easting: 694152.911									Trial Pit I	No:)		
Contra	act:	Moygaddy			Easting:	: 694152.911 Date: g: 739157.856 Excava)5/08/2021	
Locat	ion:	Maynooth, Co. Meat	th		Northing:	73915	7.856		Excavato	r: J	ICB 3CX	
Client	t:	Sky Castle Ltd			Elevation:	54.82			Logged B	y: N	/I. Kaliski	
Engin	eer:	OCSC			Dimensions (LxWxD) (m): 3.10 x	0.60 >	(1.10	Status:	F	FINAL	
Level	(mbgl)	1	Stratum Descriptio	on		Legend	Level	(mOD) Samp	les / F	ield Tests	Water
Scale:	Depth					Logona	Scale:	Depth	: Depth	Туре	e Result	Strike
	0.10	Firm grey brown sligh medium cobble conte coarse, angular to sub subrounded of limesto Firm grey brown sligh medium cobble and lo Gravel is fine to coars Cobbles and boulders 300mm diameter).	tly sandy slightly grav nt. Sand is fine to coa prounded of limeston one. tly sandy slightly grav ow boulder content. S e, angular to subrour s are angular to subrour	velly silty CLA arse. Gravel is e. Cobbles ar velly silty CLA and is fine to nded of limest ounded of limest	Y with s fine to e angular to Y with coarse. tone. estone (up to		- 54.5	54.72	2			
- 1.0	1.10		11	1			54.0	53.72	2			
		Pit terminated as no ti	II MATERIAI ENCOUNTER	al encountered. minated at 1.10m				-				
							- 53.0 — -	-				
- - 2.5 —							- - 52.5 – - -	-				
							- - 52.0 — -	-				
							- - 51.5 – -	-				
-							- - 51.0 — -	-				
		Termination:	Pit Wall Stability	Groundwater	Rate: Rem	arks:			Kev.			
		Natural soils.	Pit walls stable.	ability: Groundwater Rate: Remarks: Key: able. Dry - B = Bu D = Sn CBR = U ES = Env					Bulk o Small = Undi Enviro	disturbed I disturbed sturbed CBR nmental		

TP22 Sidewall

TP22 Spoil

TP23 Sidewall

TP23 Spoil

TP24 Sidewall

TP24 Spoil

TP25 Sidewall

TP25 Spoil

TP26 Sidewall

TP26 Spoil

TP27 Sidewall

TP27 Spoil

TP28 Sidewall

TP28 Spoil

TP29 Sidewall

TP29 Spoil

TP30 Sidewall

TP30 Spoil

Appendix 2 Survey Data

Survey Data

Location	Irish Transve	erse Mercator	Elovation	Irish National Grid				
Location	Easting	Northing	Lievation	Easting	Northing			
		Tria	l Pits					
TP22	694224.181	739192.184	55.19	294293.877	239166.871			
TP23	694171.219	739144.288	53.65	294240.904	239118.964			
TP24	694195.767	739169.748	55.38	294265.457	239144.430			
TP25	694150.929	739121.930	53.60	294220.610	239096.601			
TP26	694121.750	739105.896	53.76	294191.425	239080.563			
TP27	694111.948	739071.753	54.29	294181.621	239046.413			
TP28	694094.546	739022.870	53.10	294164.215	238997.519			
TP29	694133.893	739141.152	54.69	294203.570	239115.827			
TP30	694152.911	739157.856	54.82	294222.592	239132.535			

APPENDIX F. Response to MCC Transportation Dept. Comments

Appendix F

This forms part of a response to the An Bord Pleanála Opinion Report Ref ABP-312213-21, regarding the proposed development at Moygaddy, Maynooth Environs, Co. Meath.

In this document, O'Connor Sutton Cronin (OCSC) has addressed items raised by the Meath County Council Transportation Planning Section in the Opinion Report, dated: 20th January 2022.

Accessibility and Integration

1)

The applicant is requested to upgrade the full extents of the L6219 towards its junction with the R157 and upgrade this junction to a Traffic Signal junction. All works are to be included in the redline site boundary. Details are to be agreed with MCC.

Response

The full extent of the L6219 will be upgraded with walkways and cycle lanes, which will tie into the junction and infrastructure of the R157. All of this will be included in the redline.

2)

The applicant is requested to provide a pedestrian and cycle path for the L6219/R157 junction to the Rye river Bridge on the R157 at the county boundary to create a joined-up pedestrian network. Details are to be agreed with MCC.

Response

A full pedestrian and cycle path has been included along the R157 with an independent pedestrian/cycle bridge crossing the rye river alongside the existing bridge structure.

3)

The applicant is requested to revise the design of the realigned L6219 to provide a suitable location for the future provision of a bus stop. Details are to be agreed with MCC.

Response

Details were discussed with MCC and it was noted that this provision of a bus stop will be made on the MOOR, and not the local road.

Access Junction

1)

The applicant should provide more details on the development access setting out which road users have priority at the junction. The Applicant should ensure that the stop line from the development access is located to the rear of the footpath along the L6219 and the junction is designed according to section 4.9 of the National Cycle Manual

Response

All access junctions have been updated to be compliant with DMURS and the National Cycle Manual.

Traffic Assessment

1)

The applicant is requested to provide the specific rates used for the growth calculation and to present the calculation in tabular format.

Response

This has been included in the Traffic Assessment.

2)

The applicant is requested to consider an Opening Year + 5 scenario (2028), in addition to the Opening Year and Opening Year + 15, as is the standard under the TII Traffic and Transport Assessment Guidelines.

Response

This has been included in the Traffic Assessment.

3)

The applicant is requested to include all land uses as set out in the masterplan in the Do Maximum scenario.

Response

All land uses which are expected to be operational by the Design Year (2040) have been included in the Do Maximum scenario.

4)

The applicant is requested to include all land uses as set out in the masterplan in the Do Maximum scenario.

Response

All land uses which are expected to be operational by the Design Year (2040) have been included in the Do Maximum scenario.

5)

The applicant should provide clarity in terms of the trip rates being applied, ensuring that they are taking full consideration of the location and proximity of the proposed development, and lack thereof, to convenient public transport.

Response

The Traffic Assessment has been updated to provide additional details regarding trip rates.

6)

The applicant is requested to provide the trip rates applied and trip generation estimated to the future land uses included for the do something and do maximum scenarios.

Response

The Traffic Assessment has been updated to provide additional details regarding trip rates and trip generation.

7)

The applicant is requested to state the assumptions made in the traffic distribution exercise and give a specific, proportional breakdown of the distribution and assignment of traffic to each junction.

Response

The Traffic Assessment has been updated to make use of a dynamically assigned Vissim micro-simulation model. The dynamic assignment automatically determines trip distribution based on user cost (delays, travel time/distance, etc.). Thus distribution is automated and it is not possible to provide diagrams based on a desktop study.

The applicant's assessment indicates that a junction upgrade of Junction 4 is necessary for the opening year of the proposed development. The applicant is requested to extend the red line boundary to include this upgrade and to provide detailed layouts of the proposed upgrade to be agreed with MCC.

Response

The full MOOR has been workshopped with MCC and all their comments have been taken on board and agreed upon. Furthermore, the infrastructure to be included in the redline for the development has also been discussed with MCC and the junction upgrade will be included in a separate application specifically for the MOOR.

Road Safety

1)

The Applicant is requested to submit a Stage 1 Road Safety Audit.

Response

A road safety audit will be submitted as part of the requested quality audit.

2)

The Applicant should submit a Quality Audit that consists of an audit of walking facilities, cycling facilities and visual/mobility impaired accessibility facilities.

Response

This will be submitted.

Site Layout

1)

The Applicant should provide more details on the development access setting out which road users have priority at the junction. The Applicant should ensure that the stop line from the development access is located to the rear of the shared track along the L6219 and that the junction is designed according to section 4.9 of the National Cycle Manual.

Response

The development accesses have been designed in accordance with DMURS and the National Cycle Manual and workshopped with MCC.

The Applicant should consider a solution where the realignment of the L6219 maintains the continuity and priority of the road. The Applicant should ensure the solution adheres to DMURS geometry guidelines with regard to horizontal radii such that it can be easily retrofitted to tie in with the MOOR should this requirement arise in the future.

Response

The design has been workshopped and agreed with MCC and designed in accordance with DMURS.

3)

The Applicant should undertake to ensure the bridge along the realigned and upgraded section of the L6219 is widened to facilitate the proposed road upgrade inclusive of any recommendations made on the footpath and cycle track provisions within this report.

Response

The bridge will be designed to accommodate footpaths and cycle tracks to ensure the continuity of the infrastructure.

4)

The Applicant should ensure that any junction that interacts with cycle track facilities is designed in accordance with the National Cycle Manual.

Response

This has been incorporated into the designs.

5)

The Applicant should provide a segregated footpath and cycle track on both sides of the realigned and upgraded section of the L6219 so that the road hierarchy is consistent. Pedestrian and cycle facilities on the north side of the L6219 will also serve future residential developments to the north. These facilities should extend for the full length of the realigned and upgraded section of the L6219 towards its junction with the R157.

Response

The facilities on the northern side of the L6219 will be constructed as part of further developments in that area. This has been agreed with MCC. The infrastructure on the L6219 will be extended to the R157.

The Applicant should provide dropped kerbs and tactile paving on all arms of the internal junctions to facilitate all desired pedestrian movements.

Response

This has been incorporated into the designs.

7)

The Applicant should clarify the type of junction envisaged at this location and set out clearly how prioritisation will be handled.

Response

This has been incorporated into the designs.

8)

The Applicant should consider providing a turning head at the end of a 100m long home zone cut-de-sac located within the northeast section of the development so that refuse and emergency vehicles can undertake a turning movement at the end of the street.

Response

A turning head has been included in the development as suggested.

9)

The Applicant is requested to ensure that paths through the high amenity areas are of appropriate width to cater for both pedestrians and cyclists.

Response

This has been addressed by the architect.

10)

The Applicant should provide sight line analysis of all internal junctions and ensure that these are coordinated with any landscaping proposals.

Response

This has been incorporated into the drawings.

The Applicant is requested to ensure that the materials specified within areas to be Taking in Charge are in accordance with MCC Taking In Charge (TIC) Policy document. The Applicant should liaise with the local authority in this regard.

Response

This has been addressed by the architect.

Further to the Opinion Report, a meeting was held with MCC on 14/07/2022 where the MOOR was workshopped. The table overleaf details the correspondence on various comments raised and how they were addressed.

MOOR			
Item No	Meath Co Co Comment	OCSC Comment	Meath Co Co Comment
1	General Comment: design speed overall to be raised to 60 km/hr from 50 km/hr which would still be a DMURS design	MOOR speed raised to 60km/h between junctions with L6219 on the east and western sides.	Local roads outside of MOOR including MOOR to be 60 km/hr is acceptable. It seems to have 80 km/hr signs up on the Kildare County Council side but further past carton house we have the R157 at 60km /hr. So 60 km/hr would be in line with our existing R157 speed limits for this length of road.
2	General Comment: Boundary Treatment details for all layouts to be shown	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions
3	General Comment: tactile paving details missing for some junctions and areas, these should be shown	This has been addressed at all junctions	Ok Noted, We would like footpaths and cycleways to have tactile paving coming into shared areas etc. Any cycle route on the road to have appropriate line marking etc in line with the National Cycle manual also
4	General Comment: Public lighting details are missing on all layouts	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions, all public lighting designs will have a condition that the MCC public lighting section will have to be approved prior to

MOOR			
Item No	Meath Co Co Comment	OCSC Comment	Meath Co Co Comment
			commencement of the development
5	General Comment: There should be a right turn lane for all junctions from the main MOOR road into the minor/other roads	The traffic model indicates that this is not required	MCC notes this but would require right-hand turning lanes for traffic management reasons, not capacity reasons.
6	General Comment: A stage 1/2 Road Safety Audit should accompany any planning application	RSA will be completed once the drawing pack has been finalised	Noted
7	Drawing 1001 minor road to join perpendicular to the main line	This has been addressed	Noted for future submissions, just to add that this will be 2 lanes normal traffic route.
8	Drawing 1002 Left and right- hand turns from the main road MOOR into the minor roads should be shown. Traffic lights should be shown as this junction is at the SHD housing estates entrance.	The traffic model indicates that no turning lanes are required, and traffic signals are also not required at this junction	MCC notes this but would require right-hand turning lanes for traffic management reasons, not capacity reasons.
9	Drawing 1003 Are traffic lights needed here? The pedestrian and cycle access should be maintained from the south (Kilcloon road junction) along with full road access.	This junction will be signalised with a dedicated pedestrian and cycling facility tying in from the south	Noted for future submissions

MOOR			
Item No	Meath Co Co Comment	OCSC Comment	Meath Co Co Comment
10	Drawing 1004 As per previous comments for general, Boundary Treatment, public lighting and tactile paving are to be shown.	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions and answers for comments 2, 3 and 4
11	Drawing 1005 the traffic lights should be removed here. The design of the junction should be staggered. The MOOR road should be attractive for through traffic	A stagger has been introduced operating with priority-control	Noted for future submissions
12	Drawing 1006 the stop & traffic lights should be removed out at the Carton House entrance, a yellow box would suffice here. (question on whether this gate is actually used)	This has been addressed	Noted for future submissions
13	Drawing 1006 can the road layout no. 314 from the east be straightened up and come in perpendicular to the junction.	A redesign of this junction has been carried out, seeking to straighten the east-west axis as much as possible, while ensuring the quantum of land in front of the Carton Gate is minimised to discourage casual parking	Noted for future submissions
14	Drawing 1007 as previous comments for general, Boundary Treatment, public lighting and tactile paving to be shown.	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions and answers for comments 2, 3 and 4

MOOR			
Item No	Meath Co Co Comment	OCSC Comment	Meath Co Co Comment
15	Drawing 1008 Drawings 1707 improved cross-section with the existing bridge for pedestrian bridge 2. As in show the exiting bridge details alongside.	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions
16	Drawing 1009 The road should be 7m in line with DMURS, this road could eventually become used for active travel measures & service vehicles. 3.5m lane widths	The road has been designed as 7m wide, in line with DMURS	Noted for future submissions
17	Drawing 1010 There are some details missing from the internal road here, including pedestrian and cycle routes of 2m, 1.75m and grass verge 1.5m	This has been addressed	Noted for future submissions
18	In drawing 1011 further details showing the transition of the shared area onto the bridge from the existing road should be shown drawing 1705 is well separated from the main bridge structure. Barrier details etc to be clarified.	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions

MOOR			
Item No	Meath Co Co Comment	OCSC Comment	Meath Co Co Comment
19	Bridge Drawings 1707 improved cross-section with the existing bridge for pedestrian bridge 2. As in show the exiting bridge details alongside. Position of the parapets etc for the existing and new bridge.	MOOR design completed. Currently busy with drawing pack. These will be included in drawings	Noted for future submissions
20	Keep the layout as simple as possible, 2 signalised junctions for now for the layout.	The current MOOR design only has two signalised junctions	Noted for future submissions and agreed as per each planning submission
21	Comment from email OCSC Lizmary Alfirs	Comment 1 is in relation to raising the overall speed of the MOOR to 60km/h. Our western tie-in, into Moyglare Hall Estate road, ties into a roadway that runs in front of the Maynooth Community College. Would you, therefore, be happy with us implementing a design speed of 40km/h until we reach the intersection leading to the SHD development (circled in red), to ensure the speed is sufficiently dropped before reaching the school.	50 km/hr in accordance with DMURS is fine outside the school unless there is a change from other departments for a special speed limit.

S

O'CONNOR | SUTTON | CRON Multidisciplinary Consulting Engineers

Yours sincerely

Wian Marais For O'Connor Sutton Cronin